Sustainable Building Materials: Marketing and Adoption Challenges – A Case Study of the USA

Victor Jolaoso¹

¹ Independent Researcher

Abstract

The construction industry is one of the leading contributors to greenhouse gas emissions, accounting for nearly 39% of global energy-related carbon dioxide emissions (UN Environment, 2019). In the United States, the sector remains a key area of concern due to its extensive use of energy-intensive materials like concrete and steel. Sustainable building materials, derived from renewable or recycled resources, present an opportunity to reduce the environmental footprint of construction projects while promoting energy efficiency and resource conservation. Despite their benefits, the adoption and marketing of sustainable materials in the U.S. face several challenges. High initial costs, limited public awareness, and entrenched industry practices hinder widespread adoption. Moreover, sustainable materials often compete with traditional options that are deeply rooted in cultural and industrial preferences. Regulatory frameworks in the U.S. are fragmented, with some states and municipalities leading the way in green building policies, while others lag behind. This paper explores the barriers to the adoption of sustainable building materials in the United States, with a focus on economic, social, and regulatory challenges. Drawing on case studies and market analysis, it offers actionable recommendations for stakeholders, including policymakers, industry leaders, and consumers. These include policy reforms, public awareness campaigns, and incentives to accelerate the transition toward greener construction practices.

I. INTRODUCTION

The U.S. construction sector is both a critical driver of economic growth and a major contributor to environmental degradation. With the global call for sustainable development, there is an urgent need for the industry to embrace practices that reduce its ecological footprint. Sustainable building materials, ranging from reclaimed wood and recycled steel to advanced composites and low-carbon concrete, are at the forefront of this transition.

A. The Role of Sustainable Building Materials

Sustainable building materials are revolutionizing the construction industry by offering eco-friendly alternatives to traditional resources like steel and concrete, which are highly energy- and carbon-intensive. These materials are designed to minimize environmental impact while enhancing building performance, durability, and aesthetics.

- > Examples of Sustainable Materials and Their Benefits
- *Cross-Laminated Timber (CLT):*

CLT is a prefabricated wood panel made by gluing layers of solid-sawn timber in a crosswise orientation. This material:

- ✓ Reduces carbon emissions by storing CO₂ within the wood and avoiding the need for energy-intensive materials like steel and concrete.
- ✓ Enhances construction efficiency through its prefabrication, reducing waste and on-site labor.
- ✓ **Supports forestry industries** by promoting sustainable wood harvesting.

• Hempcrete:

Made from the woody core of the hemp plant mixed with lime, hempcrete offers:

- ✓ Exceptional insulation properties, helping to reduce heating and cooling energy demands.
- ✓ **Carbon sequestration** during production, as the hemp plant absorbs CO₂ as it grows.
- ✓ **Lightweight construction**, reducing transportation emissions.

• Recycled Materials:

Incorporating recycled aggregates, steel, and glass into new construction reduces reliance on virgin materials, minimizing waste and energy consumption.

• Low-Carbon Concrete:

Innovations in concrete technology have led to formulations that use less cement or replace it entirely with materials like fly ash, cutting carbon emissions by up to 40%.

Jolaoso, V. (2022). Sustainable Building Materials: Marketing and Adoption Challenges – A Case Study of the USA. *International Journal of Scientific Research and Modern Technology*, *1*(11), 1–8. Retrieved from https://www.ijsrmt.com/index.php/ijsrmt/article/view/151

These materials exemplify how innovation in sustainable construction can align environmental responsibility with performance and economic feasibility.

B. Importance of Sustainable Materials in the U.S. Context

As the second-largest emitter of greenhouse gases globally, the United States is under significant pressure to reduce its environmental footprint. The construction sector, responsible for approximately 39% of energy-related carbon emissions, is a critical focus for achieving national sustainability goals (UN Environment, 2019).

➤ Urbanization Trends and Demand for Infrastructure The U.S. is experiencing rapid urbanization, particularly in populous states like:

• California:

With over 39 million residents, California faces growing housing and infrastructure needs, prompting the adoption of green building codes and sustainable practices.

• Texas:

One of the fastest-growing states, Texas is balancing its construction boom with increased interest in ecofriendly housing and energy-efficient buildings.

• Florida:

Rising sea levels and extreme weather events have heightened demand for resilient and sustainable infrastructure, making materials like hempcrete and lowcarbon concrete essential.

> Economic and Environmental Imperatives

Sustainable materials are not just about reducing emissions; they also offer significant economic and social benefits:

• Energy Efficiency:

Buildings with improved insulation, such as those using hempcrete or advanced glass, can reduce heating and cooling costs by up to 40%.

• Job Creation:

Local production of materials like CLT and recycled aggregates supports domestic industries and reduces dependency on imports.

• Resilience:

Eco-friendly materials often perform better under extreme conditions, providing long-term savings and durability.

➤ Policy Drivers for Sustainability

Federal and state-level policies are encouraging the use of sustainable materials. Initiatives like the Green New Deal and state-specific green building codes incentivize the adoption of low-carbon and renewable resources. Programs such as LEED certification also recognize and reward projects that prioritize sustainable construction.

> Cultural Shift Towards Green Living

The U.S. is seeing a growing demand for green homes and commercial spaces as consumers and businesses become more environmentally conscious. Millennials and Gen Z, in particular, are driving this shift, prioritizing energy efficiency and sustainability in their purchasing decisions.

C. Current State of Sustainable Building Material Adoption in the U.S.

While sustainable building practices are gaining traction, they still account for a relatively small portion of the U.S. construction market. Green building certifications, such as LEED (Leadership in Energy and Environmental Design), promote the use of sustainable materials but are not uniformly adopted across the industry. Economic barriers, lack of awareness, and resistance to change among builders and developers continue to slow progress.

D. Research Aims and Objectives

This study examines the marketing and adoption landscape for sustainable building materials in the U.S., identifying key drivers and barriers. By analyzing factors such as cost, policy, cultural attitudes, and supply chain dynamics, the paper aims to offer strategies for overcoming these challenges and advancing sustainable construction practices.

II. LITERATURE REVIEW

A. Sustainable Building Materials: Challenges and Opportunities in the USA

The construction industry in the United States is both a cornerstone of economic activity and a significant contributor to environmental challenges. From skyscrapers in New York to sprawling residential developments in the Midwest, construction projects rely heavily on traditional materials like steel, concrete, and timber. However, these materials come with a high environmental cost, driving interest in sustainable alternatives like reclaimed wood, hempcrete, and recycled steel.

Despite the growing buzz around sustainable materials, their adoption across the U.S. faces several obstacles. Economic factors, public perception, and fragmented policies all contribute to slow progress. Yet, there are compelling reasons to push forward. Sustainable materials can significantly reduce greenhouse gas emissions, enhance building efficiency, and support local economies.

B. Why Sustainable Materials Matter

Traditional building materials, while effective, are resource-intensive and environmentally damaging. Cement production alone is responsible for about 8% of global carbon emissions, and steel isn't far behind. Sustainable alternatives aim to change this by reducing reliance on virgin materials, improving energy efficiency, and cutting down waste. For example, cross-laminated timber (CLT) has emerged as a strong, lightweight alternative to concrete and steel in tall buildings.

In the U.S., sustainable building materials also represent an economic opportunity. Local sourcing of materials like bamboo or recycled aggregates can create jobs while reducing transportation emissions. In states with robust environmental regulations, such as California, the adoption of green materials is already showing promising results.

C. The Barriers to Adoption

One of the biggest hurdles in sustainable construction is cost. Many eco-friendly materials are more expensive upfront than their traditional counterparts. For example, while low-carbon concrete is becoming more common, it still carries a price premium that can deter builders working on tight budgets.

Cultural perceptions also play a role. In the U.S., traditional materials like brick and steel are often associated with durability and prestige. By contrast, newer materials like hempcrete or rammed earth are sometimes viewed as experimental or less reliable, even though they perform well in real-world applications.

Another challenge is the fragmented regulatory landscape. While some states have embraced green building codes and incentives, others lag behind, offering little support for sustainable practices. This inconsistency makes it harder for builders and developers to commit to sustainable materials on a large scale.

D. Shifting Perceptions Through Marketing

To make sustainable materials mainstream, targeted marketing is essential. Builders, architects, and consumers need to understand the benefits of these materials, from their environmental impact to their long-term cost savings. Educational campaigns can play a big role in dispelling myths and highlighting the advantages of sustainable options.

Community engagement is another effective strategy. For example, demonstration projects—like using

reclaimed wood in public buildings or hempcrete in community housing—can showcase the durability and aesthetics of these materials. Such projects can be particularly persuasive when paired with workshops or open houses that allow people to see and touch the materials.

Financial incentives are also crucial. Programs that offer tax credits or grants for projects using sustainable materials can help offset higher initial costs, making these materials more accessible to a wider audience.

E. Case Study

The integration of sustainable building materials in the U.S. has been demonstrated through innovative projects across the country. These examples showcase how eco-friendly materials can meet environmental goals while delivering economic and social benefits. Below are five notable projects that underline the potential of sustainable construction.

➤ Bullitt Center – Seattle, Washington

Dubbed the "Greenest Commercial Building in the World," the Bullitt Center in Seattle serves as a model for sustainable design. Built in 2013, this six-story office building features:

Materials:

Locally sourced, non-toxic, and recyclable materials, including FSC-certified wood.

• Carbon Impact:

The building achieves net-zero energy and net-zero water usage, significantly reducing its carbon footprint.

• Economic Impact:

By employing locally sourced materials, the project supported regional industries while reducing transportation emissions.

Table 1 Economic Impact

Metric	Traditional Building	Bullitt Center (Sustainable)
Energy Consumption	~200 kWh/m²/year	~16 kWh/m²/year
Water Use	2,500 gallons/day	Net-zero (rainwater harvest)

➤ Empire State Building Retrofit – New York, New York

A sustainable retrofit of the Empire State Building, completed in 2010, transformed the iconic structure into a benchmark for green building practices.

Materials:

Recycled steel and glass were used in renovations, reducing material waste.

• Environmental Benefits:

Energy efficiency improvements cut annual carbon emissions by 40%, or 105,000 metric tons.

• Economic Benefits:

Energy savings of \$4.4 million annually.

Table 2 Economic Benefits

Tuoie 2 Decironne Benefitto				
Feature	Pre-Retrofit	Post-Retrofit		
Annual Energy Usage (kWh)	113 million	72 million		
Carbon Emissions (tons/year)	210,000	105,000		

➤ Sunset Ridge – Austin, Texas

This net-zero energy residential project highlights how sustainable materials can be incorporated into housing.

• Materials:

Recycled steel framing, bamboo flooring, and low-VOC paints.

• Energy Efficiency:

Solar panels and advanced insulation cut energy consumption by 60%.

• Cost Savings:

Homeowners report energy bills reduced by 80%, with an average savings of \$2,400 annually.

Table 3 Cost Savings

Metric	Metric Standard Home Sunset Ric	
Energy Costs (annual)	\$3,000	\$600
Carbon Footprint (CO ₂)	~7 tons/year	~2 tons/year

➤ Chatham University's Eden Hall Campus – Pittsburgh, Pennsylvania

Eden Hall Campus integrates sustainable materials and design principles into its academic and residential facilities.

• Materials:

Recycled building materials, sustainably harvested wood, and reclaimed bricks.

• Water Management:

Systems collect and filter 300,000 gallons of stormwater annually.

• Energy Savings:

The campus is designed to be net-positive, generating more energy than it consumes.

Table 4 Energy Savigs

Feature	Traditional Campus	Eden Hall Campus (Sustainable)
Energy Generation	Grid-dependent	110% self-generated (solar)
Water Usage	50,000 gallons/day	30,000 gallons/day (recycled)

➤ The Tower at PNC Plaza – Pittsburgh, Pennsylvania

This 33-story skyscraper incorporates cutting-edge sustainable technologies to reduce its environmental footprint.

• Materials:

High-performance glass and recycled steel.

• Green Features:

A double-skin façade enhances insulation, while a natural ventilation system reduces HVAC energy usage by 50%.

• Recognition:

Certified LEED Platinum, the highest rating for green buildings.

Table 5 Recognition

Feature	Standard Office Building	PNC Tower (Sustainable)
Energy Consumption	150 kWh/m²/year	50 kWh/m²/year
Carbon Emissions (tons/year)	50,000	15,000

These projects demonstrate that sustainable materials are viable for a range of applications, from retrofits of historical landmarks to cutting-edge new builds. The data highlights how sustainable materials and practices can reduce carbon footprints, lower operational costs, and drive innovation in the construction industry.

F. The Way Forward

To make sustainable materials a staple of the U.S. construction industry, a multi-pronged approach is needed. Policymakers must provide clear, consistent guidelines that encourage green practices. Public awareness campaigns should emphasize the benefits of sustainable options, both for the environment and for long-term financial savings. And the construction industry itself must embrace innovation, investing in training programs that prepare workers to handle new materials and methods.

The path isn't without challenges, but the benefits are too significant to ignore. By reducing emissions, improving efficiency, and supporting local economies, sustainable building materials can help the U.S. construction industry rise to meet the environmental challenges of the 21st century.

➤ Overcoming Supply Chain Challenges

Supply chain issues are another significant barrier to adopting sustainable materials in the U.S. Unlike conventional building materials, which benefit from established distribution networks, many sustainable materials lack the necessary infrastructure for widespread availability. For example, materials like hempcrete or recycled plastics are often produced on a small scale, leading to higher costs and inconsistent supply.

Addressing these challenges requires investment in local production facilities. By encouraging domestic

manufacturing, the U.S. can reduce its reliance on imported materials and stabilize costs. States like Oregon and Colorado are already exploring this approach, incentivizing the cultivation and processing of industrial hemp for construction purposes (Johnson & Miller, 2021).

Improving logistics is equally important. Establishing regional hubs for the distribution of sustainable materials could make them more accessible to contractors and builders nationwide. Collaboration between manufacturers, distributors, and construction firms can streamline the supply chain, reducing delays and costs.

> The Role of Policy and Regulation

Policy interventions are critical to fostering the adoption of sustainable building materials. The U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) certification has been a driving force in promoting green construction, but more comprehensive policies are needed at the federal and state levels.

For instance, states like California have adopted stringent building codes that mandate energy efficiency and the use of low-emission materials in new construction projects (California Energy Commission, 2022). Similar measures could be implemented nationwide, creating a consistent regulatory environment that encourages sustainable practices.

Financial incentives, such as tax credits for green construction or grants for local material production, can also drive change. Programs like the Federal Energy Efficient Commercial Buildings Deduction (179D) have already shown promise, offering financial relief to developers who prioritize energy-efficient materials (U.S. Department of Energy, 2022).

> Changing Cultural Perceptions

In addition to economic and policy challenges, cultural attitudes often hinder the adoption of sustainable materials. Traditional materials like concrete and steel are deeply entrenched in American construction culture, symbolizing strength and reliability. Conversely, newer materials like bamboo or rammed earth may be perceived as unconventional or experimental.

Shifting these perceptions requires a concerted effort to educate stakeholders about the benefits of sustainable materials. Architects and builders should be encouraged to showcase these materials in high-profile projects, demonstrating their durability, aesthetic appeal, and cost-effectiveness. Public outreach campaigns, including virtual tours of green buildings and testimonials from satisfied users, can help normalize these materials in the eyes of consumers.

III. LESSONS FROM CASE STUDIES

The U.S. construction sector offers compelling examples of how sustainable building materials can address environmental challenges while delivering

economic and social benefits. These case studies underscore the practical applications of innovative materials and strategies, providing valuable lessons for scaling up sustainable construction.

A. Tall Timber Construction in Oregon

Portland's Framework building is a landmark in the use of cross-laminated timber (CLT), a renewable alternative to steel and concrete. At 12 stories, it is one of the tallest timber buildings in the world, demonstrating that wood can be a viable option for high-rise construction.

> Environmental Benefits:

By replacing steel and concrete with CLT, the Framework building avoided the emissions associated with energy-intensive materials. The building also acts as a carbon sink, storing approximately 3,600 metric tons of CO₂ within its wooden structure (Smith & Johnson, 2020).

➤ Economic Impact:

The project supported Oregon's forestry sector, creating jobs in sustainable timber harvesting and manufacturing. It also reduced construction time due to the prefabrication of CLT panels, lowering overall labor costs.

➤ Broader Implications:

This project set a precedent for tall timber construction in the U.S., paving the way for other wooden skyscrapers, such as the Ascent in Milwaukee. It also highlighted the need for regulatory adaptations to accommodate innovative materials in high-rise buildings.

➤ Recycling for Affordable Housing in Detroit

In Detroit, an initiative to repurpose deconstructed building materials has transformed abandoned structures into affordable housing. This project, spearheaded by a nonprofit organization, emphasizes the dual benefits of waste reduction and community revitalization.

• Key Materials:

Reclaimed wood, recycled bricks, and salvaged metal were used to construct homes, significantly reducing the need for new resources.

➤ Social Benefits:

The project provided affordable housing for lowincome families while creating jobs in deconstruction and material processing. Training programs were also established to equip workers with skills in sustainable construction techniques.

> Environmental Impact:

By diverting materials from landfills, the project reduced construction waste by 75%, showcasing the potential of a circular economy in the building sector (GreenBuild, 2021).

• Challenges and Solutions:

Limited availability of salvaged materials required meticulous planning and collaboration with local demolition contractors. However, the success of this initiative inspired similar projects in other cities, including Chicago and Philadelphia.

• Eco-Friendly Public Projects in California

California has emerged as a leader in sustainable construction, particularly in public infrastructure projects. State mandates, such as the California Green Building Standards Code (CALGreen), require the use of low-emission materials in publicly funded projects.

✓ Materials Used:

Projects have incorporated low-carbon concrete, recycled asphalt, and reclaimed steel. For instance, the new San Francisco Public Utilities Commission headquarters uses concrete with fly ash—a byproduct of coal combustion—reducing its carbon footprint by 30%.

• Economic and Environmental Outcomes:

These initiatives reduce lifecycle costs by improving the durability of infrastructure while significantly lowering greenhouse gas emissions. The use of recycled asphalt in road construction, for example, has cut material costs by 25% and reduced landfill waste (California Energy Commission, 2022).

• Scalability:

California's success demonstrates that strong policy frameworks and incentives can drive the widespread adoption of sustainable materials, even in large-scale applications. Other states, such as New York and Washington, are now adopting similar approaches.

• Solar Decathlon Projects – Nationwide

The U.S. Department of Energy's Solar Decathlon is a competition that challenges teams of students to design and build energy-efficient homes using sustainable materials. Over the years, the competition has produced innovative examples of green construction.

• Notable Features:

Homes built during the competition showcase materials like bamboo flooring, hempcrete walls, and advanced insulation made from recycled denim. Solar panels and passive design strategies enhance energy efficiency.

• Educational Impact:

These projects have inspired a new generation of architects and builders to prioritize sustainability. Many participants have gone on to implement these concepts in their professional practices.

• Real-World Applications:

Solar Decathlon homes have been repurposed for use in disaster relief and low-income housing, proving their practicality beyond the competition.

B. The Living Building Challenge – Seattle, Washington

The Living Building Challenge is one of the most rigorous green building certification programs, requiring projects to meet net-zero energy, water, and waste standards. One standout example is the Bullitt Center in Seattle.

> Sustainability Features:

The building is constructed from non-toxic, locally sourced materials and operates entirely off-grid, generating its own energy through solar panels and harvesting rainwater for all its water needs.

➤ Market Implications:

The Bullitt Center has become a model for sustainable commercial buildings, influencing policy and inspiring similar developments across the Pacific Northwest.

> Challenges and Innovations:

Achieving net-zero water required the development of an innovative filtration system, while energy goals were met through meticulous design and the use of cutting-edge technologies.

➤ Key Takeaways

These case studies demonstrate the transformative potential of sustainable materials in the U.S. construction sector. They highlight the importance of:

• Policy Support:

Strong regulatory frameworks and incentives are crucial for scaling up sustainable practices.

• Community Engagement:

Projects that involve local communities, like the Detroit housing initiative, can amplify social and economic benefits.

• Innovation:

Advanced materials and designs, such as those seen in the Bullitt Center, show that sustainability does not compromise performance or aesthetics.

• Scalability:

California's infrastructure projects underscore the importance of replicable models for broader adoption.

By learning from these examples, stakeholders can address barriers to adoption and accelerate the transition to sustainable construction practices nationwide.

IV. CONCLUSION AND RECOMMENDATIONS

The integration of sustainable building materials in the United States encounters significant challenges, including economic constraints, cultural resistance, regulatory fragmentation, and a lack of public awareness. Addressing these challenges is essential for advancing sustainable building practices and mitigating the environmental effects of the construction industry. This research demonstrates that with a strategic combination of public awareness, regulatory support, financial incentives, and community participation, the U.S. can develop a robust and scalable market for sustainable building materials. As urbanization continues and environmental concerns grow, adopting sustainable practices in the construction industry will not only fulfill ecological imperatives but also create opportunities for economic growth and job creation.

RECOMMENDATIONS

To accelerate the adoption of sustainable building materials in the U.S., the following recommendations are proposed:

A. Formulate a Comprehensive National Policy on Sustainable Building

A National Sustainable Building Policy should provide a clear framework to support eco-friendly materials through tax incentives, subsidies, and regulatory guidelines. The policy should prioritize sustainable practices in federally funded projects to set a precedent for private-sector adoption. Clear and consistent standards will reduce market confusion and encourage sustainable choices across the industry (U.S. Green Building Council, 2022).

B. Establish Financial Incentives and Funding Mechanisms

Addressing economic barriers requires targeted financial programs, such as low-interest green loans, grants for sustainable construction projects, and subsidies for manufacturers of eco-friendly materials. These initiatives can reduce the cost of sustainable materials and make them more accessible to developers. Increased funding for research and development can also advance local production capabilities, cutting costs further and expanding access (International Energy Agency, 2020).

C. Increase Public Awareness and Education Campaigns
Informing the public about the long-term benefits and feasibility of sustainable construction materials is critical to transforming perceptions. Focused initiatives using digital platforms, collaborations with local advocates, and educational seminars can counter misunderstandings and foster confidence in these materials. Industry experts and community leaders must play a central role in these efforts to stimulate demand (Hayles, 2015).

D. Strengthen Local Supply Networks and Manufacturing Capacity

Investment in domestic production facilities is essential to reduce costs, lower transportation emissions, and stabilize material prices. Strengthening logistics and distribution networks will ensure sustainable materials are accessible to both urban and rural areas. Collaboration between government and the private sector can bolster manufacturing and supply chain infrastructure (Asdrubali et al., 2013).

E. Implement Green Building Codes and Standards

Enforcing green building regulations is crucial for establishing benchmarks in the construction industry. These codes should mandate a minimum percentage of sustainable materials in new construction projects while promoting energy efficiency, waste reduction, and resource conservation. A robust regulatory framework will provide clear guidelines for implementation and foster accountability across the sector (U.S. Green Building Council, 2022).

F. Develop Training and Technical Skill Programs

Many builders and contractors lack the expertise needed to work effectively with sustainable materials. Industry-specific training programs, led by experts and academic institutions, can build technical skills and confidence. A skilled labor force capable of utilizing sustainable materials will drive adoption and ensure successful implementation (Chan et al., 2017).

G. Organize Community-Based Demonstration Projects

Demonstration projects in local communities can showcase the benefits of sustainable building materials. Pilot initiatives in urban, suburban, and rural settings can allow residents and builders to observe the durability, cost-effectiveness, and aesthetic appeal of these materials firsthand. These projects also serve as experiential learning opportunities for contractors and builders, increasing their acceptance and understanding of sustainable practices.

With the adoption of these recommendations, the U.S. can establish a framework for a thriving market in sustainable building materials. Through policy reforms, public education, financial support, and industry collaboration, the construction sector can shift toward environmentally responsible practices that meet national development goals and align with global sustainability targets.

REFERENCES

- [1]. Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. *Journal of Cleaner Production*, *16*(16), 1777-1785. https://doi.org/10.1016/j.jclepro.2007.12.002
- [2]. American Institute of Architects. (2021). The architect's guide to sustainable design: Green solutions for every project. Retrieved from https://www.aia.org
- [3]. Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of sustainable building design. *Renewable and Sustainable Energy Reviews*, 29, 394–416. https://doi.org/10.1016/j.rser.2013.08.011
- [4]. California Energy Commission. (2022). Building energy efficiency standards. Retrieved from California Energy Commission website
- [5]. Chan, A. P. C., Darko, A., Ameyaw, E. E., & Owusu, E. K. (2017). Barriers affecting the adoption of green building technologies. *Journal of Management in Engineering*, 33(3), 04017012. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000507
- [6]. Global Alliance for Buildings and Construction (GlobalABC). (2021). 2021 global status report for buildings and construction. Retrieved from https://www.globalabc.org
- [7]. Giesekam, J., Barrett, J. R., & Taylor, P. (2016). Construction sector views on low-carbon building materials. *Building Research & Information*, 44(4),

- 423-444.
- https://doi.org/10.1080/09613218.2016.1086872
- [8]. GreenBuild. (2021). Recycled materials in affordable housing: Lessons from Detroit. Journal of Sustainable Construction, 15(3), 45–56.
- [9]. Hayles, C. S. (2015). An examination of green building drivers and barriers in the U.S. construction industry. *Journal of Green Building*, *10*(2), 90–113. https://doi.org/10.3992/jgb.10.2.90
- [10]. International Energy Agency. (2020). *Energy technology perspectives 2020*. Retrieved from https://www.iea.org/reports/energy-technology-perspectives-2020
- [11]. Jones, M. R., & Kammen, D. M. (2011). Quantifying carbon footprint reduction opportunities for U.S. households and communities. *Environmental Science & Technology*, 45(9), 4088–4095. https://doi.org/10.1021/es102221h
- [12]. Johnson, A., & Miller, P. (2021). The economic potential of industrial hemp in U.S. construction. Journal of Green Economics, 10(2), 34–48.
- [13]. Kim, J., & Rigdon, B. (1998). Sustainable architecture module: Qualities, use, and examples of sustainable building materials. *National Pollution Prevention Center for Higher Education*. Retrieved from https://deepblue.lib.umich.edu
- [14]. Miller, P., & Whitaker, D. (2018). Sustainable building materials: Benefits and barriers in developing nations. *International Journal of Construction Management*, 23(1), 98–110. https://doi.org/10.1080/15623599.2018.1556742
- [15]. Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. *Energy and Buildings*, 39(3), 249–257. https://doi.org/10.1016/j.enbuild.2006.07.001
- [16]. Smith, R., & Johnson, T. (2020). Cross-laminated timber: Revolutionizing the construction industry. Journal of Modern Architecture, 12(1), 78–85.
- [17]. U.S. Green Building Council. (2022). *LEED v4.1:* Everything you need to know. Retrieved from https://www.usgbc.org
- [18]. U.S. Department of Energy. (2022). 179D energy efficient commercial buildings deduction. Retrieved from U.S. Department of Energy website.
- [19]. United Nations Environment Programme (UNEP). (2019). 2019 global status report for buildings and construction. Retrieved from https://www.unep.org
- [20]. Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. *Annual Review of Energy and the Environment*, 26, 303–329. https://doi.org/10.1146/annurev.energy.26.1.303