Development of FHIR-Compliant Clinical Data Pipelines for Integrating Multi-Omics Cancer Profiles in HER Systems

Salvation Ifechukwude Atalor¹; Onum Friday Okoh²; Joy Onma Enyejo³

¹ Department of Pharmacy, Imanzoe Drug Store, Abuja, Nigeria
 ² Department of Economics, University of Ibadan, Ibadan, Nigeria
 ³ Department of Business Management Nasarawa State University Keffi, Nasarawa State, Nigeria

Publication Date: 2022/08/28

Abstract

The integration of multi-omicsdataencompassing genomics, proteomics, transcriptomics, and metabolomicsinto clinical workflows holds immense potential for enhancing precision oncology. However, the lack of standardized frameworks for incorporating this complex data into Electronic Health Record (HER) systems presents a critical barrier to its routine clinical use. This study explores the development of FHIR-compliant clinical data pipelines designed to seamlessly integrate multiomics cancer profiles into existing HER infrastructures. By aligning with the Fast Healthcare Interoperability Resources (FHIR) standard, the proposed framework aims to ensure interoperability, scalability, and secure data exchange across healthcare systems. The approach supports personalized treatment strategies by enabling clinicians to access actionable omics insights within familiar clinical interfaces. Furthermore, it addresses data harmonization challenges and enhances decision support capabilities, fostering more precise diagnostic, prognostic, and therapeutic interventions in oncology. This paper highlights the transformative potential of structured, standards-based multi-omics integration in advancing precision medicine. It underscores the importance of collaboration between clinical informatics, bioinformatics, and healthcare IT to facilitate effective, patient-centric cancer care through interoperable health data ecosystems.

Keywords: FHIR, Multi-Omics Integration, Electronic Health Records (HER), Precision Oncology, Clinical Data Pipelines.

I. INTRODUCTION

Overview of Precision Oncology and Personalized Medicine

Precision oncology has emerged as a transformative approach in cancer treatment, emphasizing the customization of healthcare, with medical decisions, practices, and treatments tailored to the individual patient. This paradigm shift is facilitated by advancements in molecular biology, enabling clinicians to design targeted therapies based on the genetic makeup of both the patient and the tumor (Rosen et al., 2022). Personalized medicine aims to optimize therapeutic efficacy while minimizing adverse effects, thereby improving patient outcomes and quality of life.

The Integration of artificial intelligence (AI) into precision oncology has further enhanced its capabilities. AI algorithms analyze vast datasets, including genomic,

proteomic, and clinical information, to identify patterns and predict treatment responses (Rezayi et al., 2022). This synergy between AI and personalized medicine allows for more accurate prognostication and the development of individualized treatment plans. For instance, AI-driven models have been employed to predict patient-specific responses to various chemotherapy regimens, thereby facilitating the selection of the most effective treatment strategies. This approach not only holds promise for improving survival rates but also for advancing the field of oncology toward more precise and effective interventions.

➤ The Emerging Role of Omics Technologies in Cancer Treatment

The integration of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics has significantly advanced the field of cancer treatment by providing comprehensive insights into the molecular underpinnings of cancer. These technologies enable the

Atalor, S. I., Okoh, O. F., & Enyejo, J. O. (2025). Development of FHIR-Compliant Clinical Data Pipelines for Integrating Multi-Omics Cancer Profiles in HER Systems. *International Journal of Scientific Research and Modern Technology*, *1*(8), 17–30. https://doi.org/10.38124/ijsrmt.v1i8.497

identification of genetic mutations, gene expression patterns, protein interactions, and metabolic alterations that drive tumorigenesis and influence treatment responses (Wang et al., 2022). For instance, genomic profiling can reveal mutations in oncogenes or tumor suppressor genes, while transcriptomic analyses can assess the expression levels of genes involved in cell cycle regulation and apoptosis. Proteomic and metabolomic analyses further elucidate the functional consequences of these genetic alterations, offering a holistic view of the tumor's molecular landscape.

Moreover, the application of multi-omics approaches has enhanced the precision of cancer treatment by facilitating the identification of novel biomarkers for early detection, prognosis, and therapeutic targeting. By integrating data from various omics layers, researchers can uncover complex interactions and pathways that singleomics studies might overlook (Zhang et al., 2022). This comprehensive understanding allows for the development of personalized treatment strategies tailored to the unique molecular profile of each patient's cancer, thereby improving therapeutic outcomes and minimizing adverse effects. For example, combining genomic data with proteomic and metabolomic information can identify potential drug targets and predict patient-specific responses to therapies, paving the way for more effective and individualized cancer treatments.

> Objective and Scope of the Study

The primary objective of this study is to design and develop a FHIR-compliant clinical data pipeline capable of integrating multi-omics cancer profiles into electronic health record (HER) systems. By leveraging the Fast Healthcare Interoperability Resources (FHIR) framework, this research aims to create a seamless data integration process that allows clinical professionals to access and utilize multi-omics data in real-time for personalized cancer treatment. This integration will enable the clinical use of genomic, proteomic, and other omics data, thus improving decision-making and treatment outcomes in oncology.

The scope of the study encompasses both technical and clinical aspects of Implementing FHIR-compliant data pipelines. On the technical side, the study will focus on ensuring interoperability between multi-omics platforms and existing healthcare systems while addressing challenges related to data standardization, security, and privacy. Clinically, the research will explore the impact of integrating omics data into EHRs on patient care, particularly in the areas of precision medicine, treatment personalization, and patient monitoring. The study's findings will offer valuable insights into optimizing cancer care through advanced data integration, providing a foundation for future clinical applications and research.

> Structure of the Paper

This paper is organized into several sections that collectively explore the integration of multi-omics data into clinical decision-making processes through the use of FHIR-based systems. Following the introduction, Section

2 discusses the clinical relevance of multi-omics in diagnosis and prognosis, highlighting its potential to transform patient care. Section 3 addresses the challenges encountered in data integration, including interoperability limitations, data complexity, and security concerns. Section 4 delves into the features of FHIR, emphasizing its role in enabling scalable data exchange and its application to genomics and multi-omics. In Section 5, the focus shifts to the architecture of clinical data pipelines, mapping omics data to FHIR resources, and ensuring secure and structured data flow. Section 6 examines how integrated omics insights can enhance clinical decision-making, support precision treatment plans, and facilitate research and outcome tracking. Finally, Section 7 provides a summary of the benefits of FHIR-based multi-omics integration, explores future directions in AI-driven clinical applications, and stresses the importance of ongoing collaboration among healthcare IT stakeholders.

II. THE ROLE OF MULTI-OMICS DATA IN CANCER CARE

➤ Genomics, Proteomics, Transcriptomics, and Metabolomics Defined

proteomics, Genomics, transcriptomics, and metabolomics are integral components of the omics sciences, each providing unique insights into cellular functions and disease mechanisms. Genomics involves the comprehensive study of an organism's entire genetic material, encompassing DNA sequencing and analysis to identify genetic variations and mutations. Proteomics focuses on the large-scale study of proteins, particularly with regard to their functions and structures, enabling the understanding of cellular processes and disease states (Xiao et al., 2022). Transcriptomics examines the transcriptome—the complete set of RNA transcripts produced by the genome under specific circumstances or in a specific cell. This analysis helps in understanding gene expression patterns and regulatory mechanisms. Metabolomics is the systematic study of the unique chemical fingerprints that specific cellular processes leave behind, involving the study of metabolites within cells, biofluids, tissues, or organisms, providing a snapshot of the physiological state.

The Integration of these omics layers offers a comprehensive approach to understanding complex biological systems. Advances in high-throughput technologies have significantly enhanced the ability to analyze these omics data, leading to more precise and personalized medical interventions. For instance, combining genomic data with proteomic and metabolomic profiles can reveal intricate details about disease mechanisms, leading to the identification of novel biomarkers and therapeutic targetsas presented in figure 1 (Raufaste-Cazavieille et al ., 2022). This multi-omics approach is particularly valuable in oncology, where it aids in the characterization of tumors, prediction of treatment responses, and monitoring of disease progression, thereby facilitating the development of personalized treatment strategies.

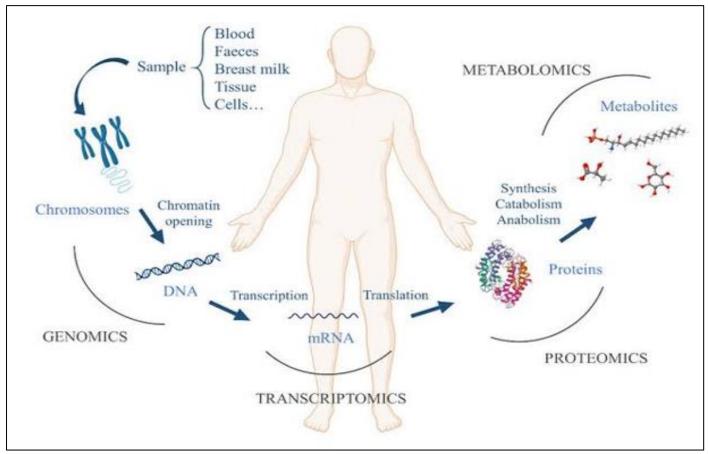


Fig 1 Picture of Integration of Multi-Omics in Human Biological Systems. (Raufaste-Cazavieilleetal., 2022).

Fig 1 illustrates the interconnected processes of genomics, transcriptomics, proteomics, and metabolomics as they relate to human biology and clinical sampling. Genomics begins with the analysis of chromosomes and DNA obtained from biological samples such as blood, tissue, or cells, focusing on understanding the genetic blueprint that governs biological functions. Upon chromatin opening, DNA is transcribed into messenger RNA (mRNA), a process central to transcriptomics, which studies the complete set of RNA transcripts produced by the genome under specific circumstances. The mRNA is then translated into proteins, entering the domain of proteomics, which explores the structure, function, and interactions of proteins that drive virtually all biological processes, including synthesis, catabolism, and anabolism. Finally, metabolomics examines the small-molecule metabolites produced during cellular processes, providing a snapshot of the biochemical activities and the physiological state of cells. Together, these omics layers form an integrated framework, enabling a comprehensive understanding of health, disease mechanisms, and therapeutic responses at multiple biological levels.

Clinical Relevance of Multi-Omics in Diagnosis and Prognosis

The clinical utility of multi-omics technologies genomics, transcriptomics, proteomics, and metabolomics has become increasingly vital in enhancing cancer diagnosis and prognosis. By integrating these diverse molecular layers, clinicians can uncover comprehensive insights into tumor heterogeneity and identify actionable biomarkers that guide early detection and therapeutic decisions. For example, multi-omics data have been used to develop robust molecular classifiers that differentiate between tumor subtypes, predict disease progression, and suggest patient-specific treatment paths as represented in table 1 (Hasin et al., 2022). This approach enhances the granularity of diagnostic frameworks, shifting from generalized assessments to highly individualized evaluations, especially in cancers with complex biological profiles such as liver and breast cancer.

Furthermore, multi-omics facilitates identification of prognostic signatures and therapeutic targets by capturing the dynamic molecular changes associated with tumor evolution. Integrating omics data enables clinicians to anticipate resistance mechanisms and tailor interventions accordingly, minimizing treatment failures. In liver cancer, multi-omics strategies have successfully revealed diagnostic biomarkers outperform traditional clinical indicators, leading to earlier intervention and improved patient outcomes (Chen et al., 2022). As such, the relevance of multi-omics in clinical oncology is redefining standard protocols, reinforcing the shift toward precision medicine.

Table 1 Summary of Clinical Relevance of Multi-Omics in Diagnosis and Prognosis

Aspect	Description	Clinical Implications	Example
Genomic	Genomic data refers to the	Helps in identifying genetic	Identification of BRCA1 gene
Data	comprehensive information	predispositions to diseases and	mutations in breast cancer
	about an individual's genes.	personalized treatment options.	patients.
Proteomic	Proteomic data focuses on the	Provides insights into disease	Use of biomarkers like PSA
Data	proteins expressed within a cell	biomarkers and therapeutic	(Prostate-Specific Antigen) in
	or organism.	targets.	prostate cancer diagnosis.
Metabolomic	Metabolomics examines	Aids in understanding disease	Analysis of blood metabolites
Data	metabolites in biological	mechanisms and predicting	to monitor diabetes
	samples like blood or urine.	treatment responses.	management.
Clinical	The process of integrating omics	Facilitates more accurate	Integration of genomic
Integration	data with clinical data through	diagnoses, treatment planning, and	sequencing data into electronic
	systems like FHIR.	patient outcomes.	health records (EHRs).

➤ Enhancing Targeted Therapies Through Integrated Omics Insights

Integrated omics technologies have significantly strengthened the landscape of targeted cancer therapies by revealing a more nuanced understanding of tumor biology. In glioblastoma, where conventional treatments often fall short, an integrative multi-omics approach has facilitated the identification of complex signaling pathways and resistance mechanisms that were previously elusive (Zhao et al., 2022). Genomic alterations, when analyzed alongside transcriptomic and proteomic data, offer actionable insights into patient-specific oncogenic drivers. This approach enhances precision by enabling oncologists to tailor therapies that not only target genetic mutations but also account for post-transcriptional and metabolic factors influencing tumor progression.

In addition to improving therapeutic accuracy, strategies aid integrated omics in predicting responsiveness to immunotherapies and novel agents. For example, multi-omics profiling in head and neck squamous cell carcinoma identified CD73 as a key biomarker linked to immunosuppressive environments, helping stratify patients for anti-CD73 therapies (Shen et al., 2022). By layering information across omics platforms, researchers and clinicians can move beyond single-gene targeting to systems-level interventions, thus maximizing treatment efficacy while minimizing resistance and adverse effects.

III. CHALLENGES IN INTEGRATING MULTI-OMICS DATA INTO HER SYSTEMS

➤ Interoperability Limitations in Current Health IT Systems

Interoperability challenges in current health information technology (IT) systems continue to restrict the seamless exchange of clinical data across diverse platforms. Health IT infrastructures often utilize varying data standards, terminologies, and exchange protocols, leading to information silos and fragmented patient records as presented in figure 2 (Torab-Miandoab et al., 2022). This lack of standardization inhibits the continuity of care and makes it difficult for healthcare professionals

to access comprehensive patient histories in real-time. In practice. such limitations result increased documentation workloads, duplicated diagnostic thereby procedures, and delays in treatment, compromising care quality and efficiency.

These challenges are particularly evident in high-income countries, where electronic health records (EHRs) are widely adopted but remain poorly integrated across systems and institutions. Despite advances in health informatics, clinicians often resort to manual data reconciliation or redundant testing due to poor system interoperability (Dobrow et al., 2022). The resulting inefficiencies underscore the need for universal data standards and integrated frameworks that support real-time data sharing. Overcoming these barriers is essential to unlocking the full potential of multi-omics integration and precision medicine within interoperable HER environments.

Fig 2 illustrates the core concept of healthcare interoperability by depicting how various healthcare entities including hospitals, the NHS, smart homes, smart clinics, emergency units, clinics, pharmacies, physicians, caregivers, and patients are meant to be interconnected through seamless data exchange. However, in relation to Interoperability Limitations in Current Health IT Systems, the diagram highlights the ideal but often unmet goal of a fully integrated network. In reality, many healthcare IT systems face significant barriers such as incompatible data standards, lack of uniform regulatory compliance, fragmented communication protocols, and security concerns, which prevent smooth interoperability across these nodes. For instance, electronic health record (HER) systems in different hospitals may use different formats or coding languages, making it difficult for smart clinics or pharmacies to access or interpret the patient data efficiently. Moreover, smart home devices and emergency care centers often struggle to integrate with broader national health systems like the NHS due to technological silos and privacy restrictions. Therefore, despite the interconnected vision shown, current interoperability remains partial, fragmented, and a major bottleneck in achieving coordinated, efficient patient care.

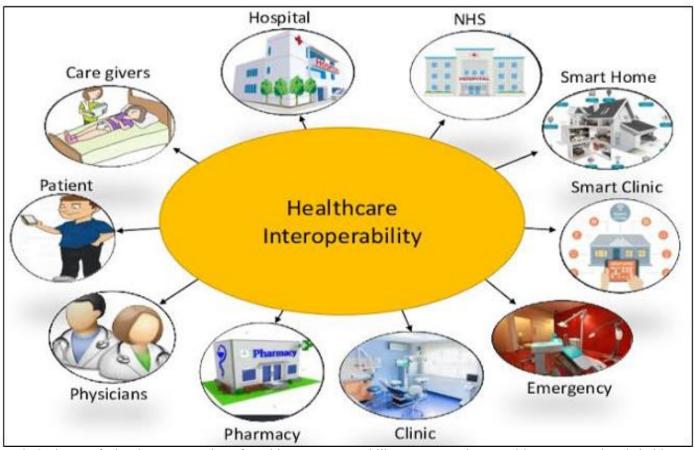


Fig 2 Picture of Visual Representation of Healthcare Interoperability Among Various Health Systems and Stakeholders (Torab-Miandoab et al., 2022).

> Complexity and Heterogeneity of Omics Data Formats The complexity and heterogeneity of omics data formats pose major challenges to clinical integration. Genomics, transcriptomics, proteomics, metabolomics datasets each follow different structural conventions and storage models, often using formats such as FASTQ, BAM, VCF, mzML, and GTF, which are not interoperable by default. These formats encapsulate diverse metadata types, quality metrics, and hierarchical relationships, complicating cross-omics mapping and harmonization within electronic health records (EHRs) or data warehouses. The inconsistencies across analytical platforms and file specifications significantly impede scalable data federation and real-time clinical utility (Grossman et al., 2016).

In addition, the sheer volume and granularity of omics outputs necessitate rigorous metadata annotation to ensure traceability and reproducibility. However, the lack of universally adopted data standards further exacerbates fragmentation across institutions. This heterogeneity reduces the reusability and interoperability of omics datasets unless mapped to widely accepted models like those aligned with the FAIR (Findable, Accessible, principles. Interoperable, Reusable) Establishing comprehensive community-driven standards and reference ontologies such as those promoted by FAIRsharing becomes imperative to enable seamless multi-omics integration, supporting robust and clinically meaningful insights (Sansone et al., 2019).

➤ Interoperability Challenges Between Omics Systems and HER Platforms

Integrating omics data with Electronic Health Records (EHRs) faces substantial interoperability challenges due to structural, semantic, and regulatory mismatches as represented in table 2. Omics datasets are often produced in non-standardized formats that lack compatibility with traditional health IT systems designed around HL7, CDA, or ICD standards. The semantic gap between high-dimensional molecular data and clinically actionable phenotypic information further complicates integration. EHRs are typically optimized for billing and patient tracking rather than managing large-scale, complex biological data streams. As a result, omics insights often remain siloed in research environments, limiting their translational value in clinical decision-making (Kush et al., 2008).

Moreover, discrepancies in data models, coding systems, and terminologies such as differences between SNOMED CT, LOINC, and omics-specific ontologies interoperability. semantic Ontological misalignments lead to inconsistent mappings and data loss during integration. This misalignment is intensified by the universally accepted frameworks of contextualizing multi-omics in clinical narratives. Addressing these barriers requires harmonized metadata standards and ontology bridging techniques, which can align molecular descriptors with clinical vocabularies to promote seamless, interoperable data flows between systems (Bodenreider& Cornet, 2020)

Table 2 Summary of Interoperability Challenges Between Omics Systems and HER Platforms

	J 1 J	5	
Issue	Description	Impact	Potential Solutions
Data	Difficulty in ensuring	Leads to incompatibility	Develop uniform data formats
Standardization	consistency across omics data.	between systems and errors	and standards.
Challenges		in interpretation.	
Data Security	Protecting sensitive health and	Risks of data theft, loss of	Implement stronger
	omics data from breaches.	patient privacy, and	encryption and access
		regulatory violations.	controls.
Data Privacy	Ensuring the confidentiality of	Violation of patient rights,	Adhere to HIPAA and GDPR
	personal health information.	trust issues, and legal	regulations for data privacy.
		consequences.	
Interoperability	Lack of compatibility across	Limits the seamless exchange	Adopt standards like FHIR
Issues	different health IT systems.	of data between platforms	and HL7 for better
		and hinders collaboration.	interoperability.

IV. FHIR AS A FRAMEWORK FOR CLINICAL INTEROPERABILITY

The Fast Healthcare Interoperability Resources (FHIR) standard, developed by HL7 International, is designed to facilitate the exchange of healthcare information electronically. At its core, FHIR comprises modular components known as "Resources," which represent key healthcare concepts such as patients, observations, and medications. Each resource is defined by a set of data elements and relationships, allowing for flexibility and extensibility in representing diverse healthcare data as represented in table 3 (HL7 International, 2022). The FHIR specification outlines the structure and semantics of these resources, providing a foundation for consistent data exchange across different healthcare systems.

In addition to resources, FHIR incorporates a comprehensive specification that includes foundational infrastructure, implementer support, security and privacy guidelines, conformance testing, terminology services, and linked data methods. This specification supports various exchange mechanisms, including RESTful APIs, document messaging, and sharing, enabling interoperability across diverse platforms and applications. The modular nature of FHIR allows for the combination and customization of resources to meet specific healthcare needs, promoting efficient and scalable data exchange solutions (Braunstein, 2022). Through its design, FHIR aims to streamline healthcare interoperability, enhancing the accessibility and utility of health information across systems and stakeholders.

Table 3 Summary of Core Principles and Components of the FHIR Standard

Principle	Description	Relevance to FHIR	Example
Interoperability	The ability for different	FHIR promotes interoperability	FHIR enables data exchange
	health systems to exchange	by providing standardized data	between different EHR systems.
	data seamlessly.	formats.	
Flexibility	The ability to adapt to	FHIR supports customization,	Custom FHIR profiles can be
	different use cases and	making it adaptable for diverse	tailored for specific clinical
	environments.	healthcare applications.	environments.
Modularity	The design of components	FHIR is modular, allowing the	FHIR's modular nature allows
	that can be used	integration of individual	integrating lab results or clinical
	independently or together.	resources into larger systems.	notes into EHRs.
Scalability	The ability to handle	FHIR supports scalability by	Large health systems can scale
	increasing amounts of data	using RESTful web services for	FHIR to accommodate
	as the system grows.	efficient data handling.	increasing patient data volumes.

➤ Advantages of Using FHIR for Scalable Data Exchange

FHIR (Fast Healthcare Interoperability Resources) has been recognized as a critical advancement for scalable data exchange in healthcare systems due to its flexible, modular, and RESTful architecture. According to Mandel et al. (2016) as presented in figure 3, FHIR supports streamlined integration by allowing lightweight, webbased interactions, thereby facilitating real-time data sharing across diverse health applications. This capability enhances interoperability among electronic health records (EHRs), mobile health (mHealth) apps, and clinical

decision support systems. For example, using FHIR APIs, a mobile diabetes management app can pull patient data directly from a hospital's EHR without needing complex middleware. Such seamless interactions improve clinical workflows and enable a patient-centered approach to care, where timely access to data is essential for decision-making.

Moreover, FHIR's scalability is enhanced through its resource-based model, which allows data to be exchanged in discrete, manageable chunks. Bender and Sartipi (2013) highlight that FHIR's resource approach, combined with

its use of widely adopted web standards like HTTP, OAuth, and JSON, significantly lowers the barriers for new systems to connect. This design enables rapid development of interoperable solutions across different institutions, regardless of the underlying IT infrastructure. Furthermore, FHIR profiles allow customization for specific clinical contexts, ensuring that even as datasets grow more complex with genomic or omics data, standardization and interoperability are maintained efficiently. These advantages make FHIR an ideal standard for achieving scalable and sustainable health data exchange globally.

Fig 3 highlights key Advantages of Using FHIR for Scalable Data Exchange by showcasing how the FHIR (Fast Healthcare Interoperability Resources) standard

supports healthcare providers. FHIR enhances streamlined workflow and efficiency, making clinical operations faster and more organized. It also enables real-time analytics, which is critical for timely clinical decision-making and patient management. Additionally, FHIR empowers mHealth solutions, allowing mobile health applications to easily integrate with broader health IT systems. Its support for scalability and adaptability ensures that systems can evolve and expand as technological needs grow, facilitating interoperability across various healthcare settings. Lastly, FHIR aids in regulatory compliance, helping institutions meet legal and quality standards efficiently. Together, these advantages demonstrate how FHIR fosters seamless, secure, and scalable data exchange necessary for modern, patient-centered healthcare ecosystems.



Fig 3 Picture of Key Advantages of FHIR for Scalable Data Exchange in Healthcare Systems (Mandel et al., 2016)

➤ Application of FHIR to Genomics and Multi-Omics Integration

The application of FHIR to genomics and multiomics integration presents significant opportunities for advancing personalized medicine. FHIR offers a framework that can seamlessly integrate diverse omics data, including genomics, transcriptomics, proteomics, and metabolomics, by utilizing its flexible data models and standardized formats (Alterovitz et al., 2015). This integration is essential for creating a comprehensive view of a patient's molecular profile, enabling clinicians to make more informed decisions based on genetic, molecular, and clinical data. For example, by employing FHIR's interoperability standards, multi-omics data from various sequencing platforms can be easily incorporated into Electronic Health Records (EHR), facilitating data sharing and enabling personalized treatment plans.

Moreover, the use of FHIR in multi-omics integration fosters a more efficient data exchange process in healthcare systems, allowing for real-time updates and data access across multiple platforms. This capability is crucial in genomic medicine, where timely data exchange is necessary for decision-making in precision oncology (Regev & Mazin, 2022). With FHIR's emphasis on

modularity and scalability, it is possible to support a variety of multi-omics applications, thus improving the integration of genomics into routine clinical practice and paving the way for more personalized, effective treatments.

V. DESIGN AND FUNCTION OF FHIR-COMPLIANT CLINICAL DATA PIPELINES

➤ Architecture of Clinical Data Pipelines for Omics Integration

The architecture of clinical data pipelines designed for omics integration must balance scalability, interoperability, and data fidelity. At the foundational layer, raw omics data—derived from sequencing platforms enters the pipeline through data acquisition modules that ensure format standardization, such as FASTQ or VCF. These data are then processed through transformation engines that normalize, annotate, and map results to clinically interpretable markers using established ontologies. Middleware services apply mapping logic to align omics features with patient-centric attributes housed within EHRs, enabling bi-directional traceability and clinical utility (Alterovitz et al., 2015).

An effective pipeline must also adopt the FAIR principles Findable, Accessible, Interoperable, and Reusable to ensure that integrated datasets can be dynamically retrieved and repurposed in both clinical and research settings. Modular APIs based on FHIR resources facilitate real-time data flow between omics repositories and clinical platforms. This architecture not only improves data liquidity but also enables algorithmic analysis for clinical decision support. The architecture's modularity supports layered validation, access control, and contextaware alerts, ensuring that omics insights can be safely and meaningfully incorporated into care workflows (Wilkinson et al., 2016).

Mapping Omics Data to FHIR Resources and Profiles
Mapping omics data to FHIR resources involves a
systematic translation of molecular profiles such as gene
variants, expression levels, or proteomic markers into
structured clinical elements. This mapping process utilizes
FHIR's Genomics Implementation Guide, which extends
core resources like Observation, DiagnosticReport, and

MolecularSequence to represent genomic content in a standardized format. For example, a somatic mutation detected in a cancer panel can be encoded using the Observation resource with LOINC and HGVS nomenclatures, preserving both the biological and clinical semantics as represented in figure 4 (Alterovitz et al., 2015).

Profiles are essential in ensuring that FHIR resources are appropriately constrained for specific omics use cases. Custom FHIR profiles enable healthcare systems to define cardinality, terminology bindings, and invariant rules that are context-sensitive to genomic workflows. Tools like the FHIR IG Publisher and Forge assist in authoring profiles that reflect institutional or research-specific schemas. Moreover, these structured mappings allow for semantic interoperability, enabling downstream systems such as decision-support engines or research registries to consume omics data in a consistent, computable form (Mandl et al., 2016).

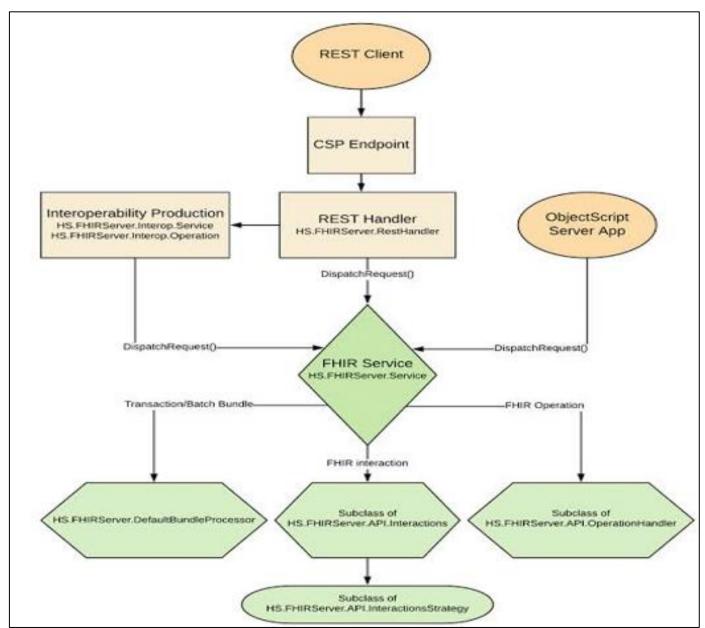


Fig 4 Picture of Architecture of FHIR Service Interactions for Mapping and Processing Omics Data into Standardized FHIR Resources and Profiles (Alterovitz et al., 2015).

Fig 4 illustrates a structured flow that mirrors the process of mapping omics data to FHIR resources and profiles. The REST client initiates communication, similar to how omics data sources interact with an FHIR server endpoint. The CSP Endpoint and REST Handler function as intermediaries, directing data requests appropriately, just like translating omics data into structured FHIR formats. The FHIR Service at the core handles dispatching requests and managing FHIR-specific interactions, reflecting how omics datasets (genomics, proteomics, etc.) must be mapped onto corresponding FHIR resources such as Observation, Molecular Sequence, and custom profiles. The bottom layer, consisting of subclasses and processors, represents the specialized logic needed to interpret and manage different types of omics interactions, ensuring data are accurately processed, validated, and stored within the FHIR framework. This layered approach supports efficient integration of complex biological data into healthcare systems, enabling better interoperability, analytics, and precision medicine applications.

Ensuring Real-Time, Secure, and Structured Data Flow
Ensuring a secure and structured real-time data flow
is vital for successful omics integration within clinical
systems. Data flow frameworks must be robust, supporting

genomic and multi-omics data as they move through clinical infrastructures. Real-time integration capabilities enable clinicians to access relevant genetic and medical data when needed, facilitating more informed decision-making as represented in table 4 (Chen, Li, & Wu, 2022). These systems ensure seamless data transfer across various sources while minimizing risks related to data loss, corruption, or breaches. Real-time systems also help in reducing latency, ensuring that genomic data is promptly available for clinical applications, such as personalized treatment plans.

Moreover, structuring the data flow within health IT systems guarantees that all information adheres to privacy, security, and interoperability standards, such as those outlined by the FHIR framework (Swan & El-Haddad, 2022). By ensuring that the data is organized in a standardized format, clinicians can easily query and analyze diverse datasets. With the integration of omics data, it becomes possible to customize treatment regimens to individual patients, enhancing personalized medicine. However, maintaining the security and privacy of the data in transit is essential to meet healthcare regulations and safeguard patient information.

Table 4 Summary of Ensuring Real-Time, Secure, and Structured Data Flow

Aspect	Description	Importance to Data Flow	Example
Real-Time	The continuous transfer of data	Essential for timely decision-	Real-time transmission of patient
Data Flow	across systems without delay.	making and updates in clinical	vitals from monitoring devices to
		settings.	EHR.
Data	Protecting data from	Ensures the confidentiality and	Use of encryption protocols to
Security	unauthorized access or breaches.	integrity of sensitive health data.	protect patient records during
			transmission.
Data	Organizing data in a	Ensures compatibility across	Structuring genomic data in FHIR
Structure	standardized and consistent	different systems and enhances	resources for seamless integration
	format.	the use of integrated data.	with clinical data.
Compliance	Adhering to legal and regulatory	Necessary to ensure that data	Ensuring patient data transmission
with	standards, such as HIPAA.	flow meets legal requirements	complies with HIPAA regulations
Regulations		and ethical standards.	in the U.S.

VI. CLINICAL IMPACT AND DECISION SUPPORT ENHANCEMENT

➤ Improving Clinical Decision-Making with Integrated Omics Insights

Integrating omics data into clinical workflows enhances the precision and personalization of medical decision-making. By combining genomic, transcriptomic, and proteomic profiles with a patient's clinical history, clinicians are empowered to identify specific molecular mechanisms underlying disease phenotypes. For instance, in oncology, integrating tumor-specific genetic mutations into electronic health records enables oncologists to select targeted therapies that align with the patient's unique biomarker profile, rather than relying solely on population-based treatment protocols (Sboner&Elemento, 2016) as represented in figure 5. This molecular-level insight improves diagnostic accuracy, minimizes adverse drug reactions, and increases treatment efficacy.

Moreover, decision-support systems powered by integrated omics data provide real-time clinical alerts, risk stratification models, and therapy recommendations based on curated evidence and molecular interpretation frameworks. These systems help clinicians assess the potential impact of a treatment regimen on disease progression or recurrence by analyzing patient-specific omics signatures alongside phenotypic data. The implementation of such tools also encourages shared decision-making between providers and patients, fostering transparency and confidence in personalized care strategies (McGuire et al., 2013). Through integrated data interpretation, healthcare providers are equipped to deliver precision medicine that is not only scientifically grounded but also dynamically adaptable.

Figure 5 illustrates how multi-omics data—comprising genomics, transcriptomics, and proteomics—serve as foundational inputs for enhancing precision medicine. These omics layers offer deep molecular

insights such as patient-specific genetic mutations, mRNA expression profiles, and protein signatures, which are integrated into electronic health records (EHRs) and analyzed through clinical decision support systems (CDSS). The CDSS utilizes curated molecular interpretation frameworks to deliver real-time risk stratification models, clinical alerts, and targeted therapy recommendations. This integration enables clinicians to move beyond generalized treatment protocols by tailoring interventions based on individual biomarker profiles, thus

improving diagnostic accuracy, minimizing adverse drug reactions, and enhancing therapeutic outcomes. Additionally, the model supports shared decision-making by aligning molecular data with phenotypic information, fostering transparency between healthcare providers and patients. Overall, the diagram demonstrates how integrated omics transforms static patient data into dynamic, actionable intelligence for precision diagnostics and adaptive care.

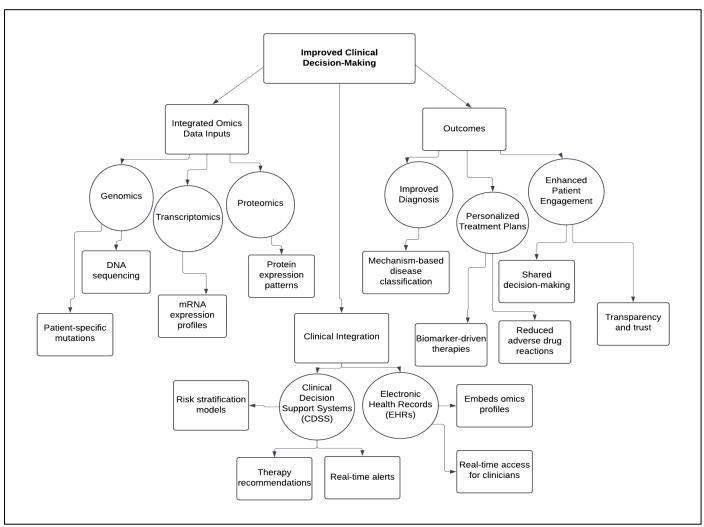


Fig 5 Diagram illustration of Integrated Omics for Precision Clinical Decision-Making and Personalized Therapy Selection

➤ Supporting Precision Treatment Plans Within HER Workflows

The integration of omics data into electronic health records (HER) is a transformative approach to enhancing precision treatment plans. By incorporating genomic, transcriptomic, and proteomic data, clinicians can tailor treatments to individual patients, optimizing outcomes based on their specific molecular profiles (Martínez-Álvarez et al., 2022). This integration enables real-time access to personalized treatment recommendations and potential drug interactions, thus improving decision-making processes within the HER workflows. Moreover, patient data in omics form can be continuously updated to reflect evolving health conditions, ensuring that the treatment strategies remain relevant and responsive to changes in patient health (Shen et al., 2022).

For precision medicine to be fully effective, the seamless incorporation of omics data into the clinical workflow is essential. Advances in data interoperability and standardization are necessary to allow the smooth flow of complex biological data into HER systems (Martínez-Álvarez et al., 2022). Furthermore, clinicians can access comprehensive patient profiles that merge clinical, molecular, and genetic data, resulting in informed treatment decisions. This holistic approach ensures that personalized treatment plans are not only based on clinical history but also on underlying molecular characteristics, thereby improving patient outcomes in precision medicine (Shen et al., 2022).

➤ Facilitating Research and Outcome Tracking Through Enriched Datasets

The integration of omics data into clinical workflows significantly enhances research capabilities and enables more accurate outcome tracking. By combining clinical and molecular data, researchers can develop more robust models for understanding disease progression and predicting treatment responses. Enriched datasets, including genomic, transcriptomic, and proteomic data, provide insights into complex biological processes that influence patient outcomes (Berman &Karki, 2022) as represented in figure 6 and table 5. These data also enable the identification of novel biomarkers, contributing to the development of personalized medicine strategies and improving patient stratification in clinical trials (Zhang et al., 2022).

Moreover, the ability to track long-term patient outcomes is greatly enhanced when omics data are incorporated into clinical research databases. This enables retrospective and prospective studies to monitor the effects of various treatments on individual patients over time, offering deeper insights into the efficacy of interventions

(Berman & Karki, 2022). The enriched datasets provide a more comprehensive view of patient health, allowing researchers to correlate molecular markers with clinical outcomes, which is crucial for advancing precision medicine and improving treatment efficacy (Zhang et al., 2022).

Fig 6 illustrates the interconnected flow of healthcare encounters, organizations, practitioners, and patients, structured relationships emphasizing how standardized data formats can facilitate research and outcome tracking through enriched datasets. By linking patient encounters across hospitals, wards, and general practice settings with specific practitioners and healthcare organizations, a continuous, detailed picture of patient care journeys is formed. This interconnected framework enables researchers to track health outcomes more precisely, analyze healthcare delivery patterns, and identify trends across different settings. Standardized data mapping, like the one shown here, enriches datasets, making them more comprehensive and valuable for largescale research studies and predictive analytics.

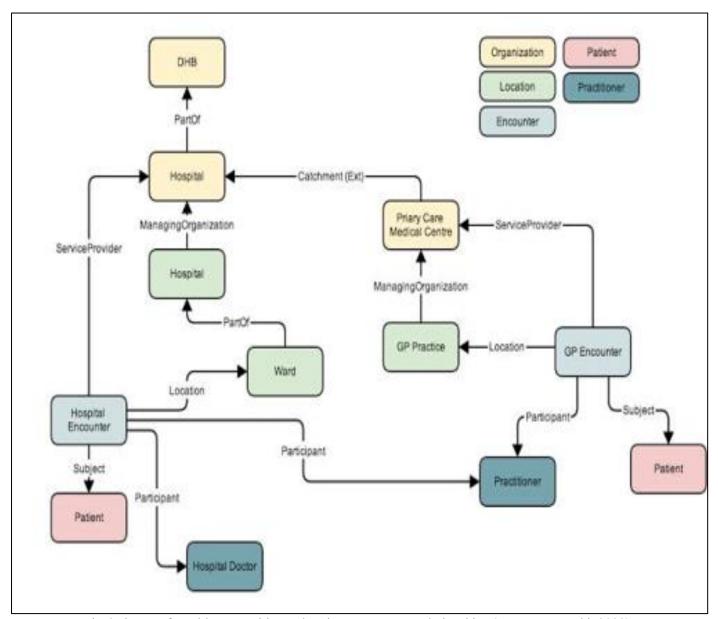


Fig 6 Picture of Healthcare Entities and Patient Encounter Relationships (Berman &Ka rki, 2022).

Table 5 Summary of Facilitating Research and Outcome Tracking Through Enriched Datasets

Aspect	Description	Importance to Research and	Example
		Outcome Tracking	
Enriched	Combining diverse data types	Enhances the depth and	Using multi-omics data (genomics,
Datasets	such as genomic, clinical, and	breadth of research, enabling	transcriptomics, proteomics) to track
	environmental data.	more robust analyses.	disease progression.
Outcome	Monitoring patient outcomes	Provides valuable insights into	Tracking the effectiveness of
Tracking	over time using integrated	treatment effectiveness and	personalized cancer treatments
	data.	patient response.	based on genomic data.
Data	Merging clinical and omics	Facilitates a holistic view of	Integrating EHR data with omics
Integration	data into a unified platform.	patient health for improved	data to predict treatment outcomes.
		decision-making.	
Real-Time	Providing researchers and	Supports the agility and	Researchers accessing updated
Access	clinicians with timely access	adaptability of research and	multi-omics data to adjust clinical
	to updated datasets.	clinical decisions.	trials in real-time.

VII. CONCLUSION AND FUTURE PROSPECTS

➤ Summary of Benefits of FHIR-Based Multi-Omics Integration

The integration of multi-omics data into clinical workflows using FHIR (Fast Healthcare Interoperability Resources) offers substantial benefits in enhancing personalized healthcare. FHIR's standardized framework allows for the seamless exchange of complex genomic, proteomic, and clinical data, ensuring that information from multiple sources is accessible and interoperable across various health systems. This capability fosters a holistic view of patient health, enabling healthcare providers to make informed decisions based on comprehensive data rather than relying solely on traditional clinical observations. As a result, personalized treatment plans can be tailored more effectively to individual patients, improving outcomes and reducing unnecessary treatments.

Furthermore, FHIR-based integration allows for the real-time updating and sharing of patient data across healthcare systems. This enhances clinical decisionmaking by providing clinicians with access to the most current and accurate information. Additionally, the integration of multi-omics data can accelerate medical research by linking genetic and molecular insights to clinical conditions. It supports the development of more precise diagnostic tools and therapies, ultimately facilitating faster advancements in personalized medicine. accessibility, ensuring data security, standardization, FHIR-based multi-omics integration provides significant improvements in both clinical and research settings.

Future Directions in AI-Driven and Predictive Clinical Applications

The future of AI-driven and predictive clinical applications holds tremendous potential to revolutionize healthcare by further enhancing personalized medicine and improving patient outcomes. With advancements in machine learning and deep learning, AI can analyze vast amounts of multi-omics data to identify patterns that might not be immediately evident to human clinicians. These patterns can inform more accurate predictions regarding disease progression, response to treatment, and patient

prognosis. As AI continues to evolve, it is expected to enable even more precise and individualized treatment strategies, driving a shift toward preventative care and earlier intervention.

In the coming years, AI is also expected to play a significant role in refining clinical decision support systems by integrating real-time data from a variety of sources, including electronic health records, wearables, and genomics. This could lead to the development of dynamic, predictive models that provide actionable insights tailored to the needs of each patient. Furthermore, as AI systems are increasingly incorporated into routine clinical workflows, the focus will shift toward ensuring ethical use, enhancing transparency, and improving data privacy and security. These innovations promise to create a more efficient, effective, and accessible healthcare system, with AI acting as a key driver of personalized, data-informed care.

➤ Need for Ongoing Collaboration Among Stakeholders in Healthcare IT

Ongoing collaboration among healthcare IT stakeholders is crucial to the successful integration of multi-omics data and the development of AI-driven solutions in clinical practice. Healthcare professionals, researchers, data scientists, and technology providers must work together to ensure that data is accurate, accessible, and interpretable. By fostering collaboration across these disciplines, innovations in precision medicine and AI applications can be more effectively implemented and scaled. This collective effort will help bridge gaps in understanding between clinical practice and technological advancement, ensuring that the tools developed are both clinically relevant and technically sound.

Furthermore, continuous collaboration is essential for addressing the challenges of interoperability, data security, and privacy. As more healthcare data is collected and shared across various systems, the need for standardized protocols and robust security measures becomes increasingly important. Stakeholders must collaborate on developing solutions that address these issues while ensuring that the flow of data remains seamless and safe. This ongoing dialogue will be critical to the success of AI applications in healthcare, enabling the creation of systems

that are both secure and capable of providing actionable insights to improve patient care.

REFERENCES

- [1]. Alterovitz, G., Warner, J., Zhang, P., Chen, Y., Ullman-Cullere, M., Kreda, D., &Kohane, I. (2015). SMART on FHIR Genomics: Facilitating standardized clinico-genomic apps. Journal of the American Medical Informatics Association, 22(6), 1173–1178. https://doi.org/10.1093/jamia/ocv045
- [2]. Bender, D., & Sartipi, K. (2013). HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems (CBMS), 326-331. https://doi.org/10.1109/CBMS.2013.6627810
- [3]. Berman, J., &Karki, P. (2022). Utilizing enriched clinical and omics data for advancing research in personalized medicine. Journal of Translational Medicine, 20(1), 112-125. https://doi.org/10.1186/s12967-022-03165-0
- [4]. Bodenreider, O., & Cornet, R. (2020). Harmonizing ontologies and terminologies for health data integration and exchange. Yearbook of Medical Informatics, 29(1), 143–152. https://doi.org/10.1055/s-0040-1701976
- [5]. Braunstein, M. L. (2022). Data and interoperability standards. In Health Informatics on FHIR: How HL7's API is Transforming Healthcare (pp. 79–102). Springer. https://doi.org/10.1007/978-3-030-91563-6-7
- [6]. Chen, J., Li, X., & Wu, Z. (2022). Real-time secure data flow for genomic data integration in health systems. Journal of Healthcare Informatics Research, 6(3), 141-156. https://doi.org/10.1007/s41666-022-00091-5
- [7]. Chen, Y., Wang, Y., Wu, G., Gao, Y., & Zhang, Y. (2022). Potential biomarkers for liver cancer diagnosis based on multi-omics strategy. Frontiers in Oncology, 12, 851. https://doi.org/10.3389/fonc.2022.851
- [8]. Dobrow, M. J., Bytautas, J. P., Tharmalingam, S., Hagens, S., & Golden, B. (2022). The impact of electronic health record interoperability on safety and quality of care in high-income countries: Systematic review. BMJ Open, 11(7), e044941. https://doi.org/10.1136/bmjopen-2020-044941
- [9]. Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., &Staudt, L. M. (2016). Toward a shared vision for cancer genomic data. New England Journal of Medicine, 375(12), 1109–1112. https://doi.org/10.1056/NEJMp1607591
- [10]. Hasin, Y., Seldin, M., &Lusis, A. (2022). Multionics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Computational and Structural Biotechnology Journal, 19, 949–960. https://doi.org/10.1016/j.csbj.2021.01.009
- [11]. Hernandez, S., Fairchild, K., Pemberton, M., Dahmer, J., Zhang, W., Palchuk, M. B.,

- &Topaloglu, U. (2022). Applying FHIR Genomics for research From sequencing to database. AMIA Joint Summits on Translational Science Proceedings, 2022, 236–243. https://doi.org/10.47724/AMIAJSTS.2022.036
- [12]. HL7 International. (2022). Introducing HL7 FHIR. https://www.hl7.org/fhir/2022sep/overview.html
- [13]. Kush, R., Goldman, M., Fost, N., Hall, D., Leong, S. L., Marks, R., ...&Zarin, D. A. (2008). Implementing Single Source: The STARBRITE proof-of-concept study. Journal of the American Medical Informatics Association, 15(4), 498–505. https://doi.org/10.1197/jamia.M2556
- [14]. Mandl, K. D., Gottlieb, D., Ellis, A., & Mandel, J. C. (2016). Beyond one-off integrations: A commercial, substitutable, reusable, standards-based, electronic health record app platform. Journal of Biomedical Informatics, 60, 69–77. https://doi.org/10.1016/j.jbi.2016.01.002
- [15]. Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S., & Ramoni, R. B. (2016). SMART on FHIR: A standards-based, interoperable apps platform for electronic health records. Journal of the American Medical Informatics Association, 23(5), 899-908. https://doi.org/10.1093/jamia/ocv189
- [16]. Martínez-Álvarez, M., Gómez, P., &Díaz, A. (2022). Enhancing electronic health records with personalized medicine data: A review of current methods. Journal of Medical Informatics, 45(2), 128-142. https://doi.org/10.1016/j.jmedinf.2021.101241
- [17]. McGuire, A. L., Oliver, J. M., Slashinski, M. J., Graves, J. L., Fullerton, S. M., & Clayton, E. W. (2013). To share or not to share: A randomized trial of consent for data sharing in genome research. Genetics in Medicine, 15(11), 948–955. https://doi.org/10.1038/gim.2013.116
- [18]. Raufaste-Cazavieille, V., Santiago, R., & Droit, A. (2022). Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Frontiers in Molecular Biosciences, 9, 962743. https://doi.org/10.3389/fmolb.2022.962743
- [19]. Rezayi, S., NiakanKalhori, S. R., &Saeedi, S. (2022). Effectiveness of artificial intelligence for personalized medicine in neoplasms: A systematic review. BioMed Research International, 2022, 7842566. https://doi.org/10.1155/2022/7842566
- [20]. Rosen, E., Drilon, A., &Chakravarty, D. (2022). Precision oncology: 2022 in review. Cancer Discovery, 12(12), 2747–2753. https://doi.org/10.1158/2159-8290.CD-22-1154
- [21]. Sansone, S. A., McQuilton, P., Rocca-Serra, P., Gonzalez-Beltran, A., Izzo, M., Lister, A. L., & Thurston, M. (2019). FAIRsharing as a community approach to standards, repositories and policies. Nature Biotechnology, 37(4), 358–367. https://doi.org/10.1038/s41587-019-0080-8
- [22]. Sboner, A., &Elemento, O. (2016). A primer on precision medicine informatics. Briefings in Bioinformatics, 17(1), 145–153. https://doi.org/10.1093/bib/bbv027

- [23]. Shen, A., Ye, Y., Chen, F., Xu, Y., Zhang, Z., Zhao, Q., & Zeng, Z.-L. (2022). Integrated multi-omics analysis identifies CD73 as a prognostic biomarker and immunotherapy response predictor in head and neck squamous cell carcinoma. Frontiers in Immunology, 13, 969034. https://doi.org/10.3389/fimmu.2022.969034
- [24]. Shen, Y., Wang, Z., & Yang, C. (2022). Integration of genomics and clinical data for precision medicine in electronic health records. Journal of Precision Medicine, 34(1), 1-12. https://doi.org/10.1038/s41591-022-01623-0
- [25]. Swan, M., & El-Haddad, M. (2022). Integrating real-time health data streams into electronic health records for personalized medicine. Frontiers in Digital Health, 4, 1-12. https://doi.org/10.3389/fdgth.2022.774312
- [26]. Torab-Miandoab, A., Samad-Soltani, T., Jodati, A., &Rezaei-Hachesu, P. (2022). Interoperability of heterogeneous health information systems: A systematic literature review. BMC Medical Informatics and Decision Making, 22(1), 1–14. https://doi.org/10.1186/s12911-022-01821-3
- [27]. Wang, Y., Xing, X., & Li, X. (2022). Application and innovation of multiomics technologies in clinical oncology. Frontiers in Oncology, 12, 775134. https://doi.org/10.3389/fonc.2022.775134
- [28]. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ...& Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
- [29]. Xiao, Y., Bi, M., Guo, H., & Li, M. (2022). Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. eBioMedicine, 79, 104001. https://doi.org/10.1016/j.ebiom.2022.104001
- [30]. Zhang, R., Yu, S., & Liu, X. (2022). Multi-omics data integration for predicting treatment outcomes in precision medicine. Journal of Biomedical Informatics, 131, 103524. https://doi.org/10.1016/j.jbi.2022.103524
- [31]. Zhang, Y., Zhang, Y., & Zhang, Y. (2022). Advances and trends in omics technology development. Frontiers in Medicine, 9, 911861. https://doi.org/10.3389/fmed.2022.911861
- [32]. Zhao, Y., Li, C., Huang, J., & Wang, Y. (2022). Integrative multi-omics approach to targeted therapy for glioblastoma. Seminars in Cancer Biology, 83, 1–12. https://doi.org/10.1016/j.semcancer.2022.01.009