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Abstract

The integration of multi-omicsdataencompassing genomics, proteomics, transcriptomics, and metabolomicsinto clinical
workflows holds immense potential for enhancing precision oncology. However, the lack of standardized frameworks for
incorporating this complex data into Electronic Health Record (HER) systems presents a critical barrier to its routine clinical
use. This study explores the development of FHIR-compliant clinical data pipelines designed to seamlessly integrate multi-
omics cancer profiles into existing HER infrastructures. By aligning with the Fast Healthcare Interoperability Resources
(FHIR) standard, the proposed framework aims to ensure interoperability, scalability, and secure data exchange across
healthcare systems. The approach supports personalized treatment strategies by enabling clinicians to access actionable omics
insights within familiar clinical interfaces. Furthermore, it addresses data harmonization challenges and enhances decision
support capabilities, fostering more precise diagnostic, prognostic, and therapeutic interventions in oncology. This paper
highlights the transformative potential of structured, standards-based multi-omics integration in advancing precision
medicine. It underscores the importance of collaboration between clinical informatics, bioinformatics, and healthcare IT to
facilitate effective, patient-centric cancer care through interoperable health data ecosystems.
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l. INTRODUCTION proteomic, and clinical information, to identify patterns

and predict treatment responses (Rezayi et al., 2022). This

» Overview of Precision Oncology and Personalized
Medicine

Precision oncology has emerged as a transformative
approach in cancer treatment, emphasizing the
customization of healthcare, with medical decisions,
practices, and treatments tailored to the individual patient.
This paradigm shift is facilitated by advancements in
molecular biology, enabling clinicians to design targeted
therapies based on the genetic makeup of both the patient
and the tumor (Rosen et al., 2022). Personalized medicine
aims to optimize therapeutic efficacy while minimizing
adverse effects, thereby improving patient outcomes and
quality of life.

The Integration of artificial intelligence (Al) into
precision oncology has further enhanced its capabilities.
Al algorithms analyze vast datasets, including genomic,

synergy between Al and personalized medicine allows for
more accurate prognostication and the development of
individualized treatment plans. For instance, Al-driven
models have been employed to predict patient-specific
responses to various chemotherapy regimens, thereby
facilitating the selection of the most effective treatment
strategies. This approach not only holds promise for
improving survival rates but also for advancing the field of
oncology toward more precise and effective interventions.

» The Emerging Role of Omics Technologies in Cancer
Treatment
The integration of omics technologies such as
genomics, transcriptomics, proteomics, and metabolomics
has significantly advanced the field of cancer treatment by
providing comprehensive insights into the molecular
underpinnings of cancer. These technologies enable the
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identification of genetic mutations, gene expression
patterns, protein interactions, and metabolic alterations
that drive tumorigenesis and influence treatment responses
(Wang et al., 2022). For instance, genomic profiling can
reveal mutations in oncogenes or tumor suppressor genes,
while transcriptomic analyses can assess the expression
levels of genes involved in cell cycle regulation and
apoptosis. Proteomic and metabolomic analyses further
elucidate the functional consequences of these genetic
alterations, offering a holistic view of the tumor’s
molecular landscape.

Moreover, the application of multi-omics approaches
has enhanced the precision of cancer treatment by
facilitating the identification of novel biomarkers for early
detection, prognosis, and therapeutic targeting. By
integrating data from various omics layers, researchers can
uncover complex interactions and pathways that single-
omics studies might overlook (Zhang et al., 2022). This
comprehensive understanding allows for the development
of personalized treatment strategies tailored to the unique
molecular profile of each patient’s cancer, thereby
improving therapeutic outcomes and minimizing adverse
effects. For example, combining genomic data with
proteomic and metabolomic information can identify
potential drug targets and predict patient-specific
responses to therapies, paving the way for more effective
and individualized cancer treatments.

» Objective and Scope of the Study

The primary objective of this study is to design and
develop a FHIR-compliant clinical data pipeline capable
of integrating multi-omics cancer profiles into electronic
health record (HER) systems. By leveraging the Fast
Healthcare Interoperability Resources (FHIR) framework,
this research aims to create a seamless data integration
process that allows clinical professionals to access and
utilize multi-omics data in real-time for personalized
cancer treatment. This integration will enable the clinical
use of genomic, proteomic, and other omics data, thus
improving decision-making and treatment outcomes in
oncology.

The scope of the study encompasses both technical
and clinical aspects of Implementing FHIR-compliant data
pipelines. On the technical side, the study will focus on
ensuring interoperability between multi-omics platforms
and existing healthcare systems while addressing
challenges related to data standardization, security, and
privacy. Clinically, the research will explore the impact of
integrating omics data into EHRs on patient care,
particularly in the areas of precision medicine, treatment
personalization, and patient monitoring. The study’s
findings will offer valuable insights into optimizing cancer
care through advanced data integration, providing a
foundation for future clinical applications and research.

» Structure of the Paper

This paper is organized into several sections that
collectively explore the integration of multi-omics data
into clinical decision-making processes through the use of
FHIR-based systems. Following the introduction, Section

2 discusses the clinical relevance of multi-omics in
diagnosis and prognosis, highlighting its potential to
transform patient care. Section 3 addresses the challenges
encountered in data integration, including interoperability
limitations, data complexity, and security concerns.
Section 4 delves into the features of FHIR, emphasizing its
role in enabling scalable data exchange and its application
to genomics and multi-omics. In Section 5, the focus shifts
to the architecture of clinical data pipelines, mapping
omics data to FHIR resources, and ensuring secure and
structured data flow. Section 6 examines how integrated
omics insights can enhance clinical decision-making,
support precision treatment plans, and facilitate research
and outcome tracking. Finally, Section 7 provides a
summary of the benefits of FHIR-based multi-omics
integration, explores future directions in Al-driven clinical
applications, and stresses the importance of ongoing
collaboration among healthcare IT stakeholders.

Il.  THE ROLE OF MULTI-OMICS DATA IN
CANCER CARE

» Genomics, Proteomics,
Metabolomics Defined

Genomics, proteomics, transcriptomics, and
metabolomics are integral components of the omics
sciences, each providing unique insights into cellular
functions and disease mechanisms. Genomics involves the
comprehensive study of an organism’s entire genetic
material, encompassing DNA sequencing and analysis to
identify genetic variations and mutations. Proteomics
focuses on the large-scale study of proteins, particularly
with regard to their functions and structures, enabling the
understanding of cellular processes and disease states
(Xiao et al ., 2022). Transcriptomics examines the
transcriptome—the complete set of RNA transcripts
produced by the genome under specific circumstances or
in a specific cell. This analysis helps in understanding gene
expression patterns and regulatory mechanisms.
Metabolomics is the systematic study of the unique
chemical fingerprints that specific cellular processes leave
behind, involving the study of metabolites within cells,
biofluids, tissues, or organisms, providing a snapshot of
the physiological state.

Transcriptomics, and

The Integration of these omics layers offers a
comprehensive approach to understanding complex
biological systems. Advances in high-throughput
technologies have significantly enhanced the ability to
analyze these omics data, leading to more precise and
personalized medical interventions. For instance,
combining genomic data with proteomic and metabolomic
profiles can reveal intricate details about disease
mechanisms, leading to the identification of novel
biomarkers and therapeutic targetsas presented in figure 1
(Raufaste-Cazavieille et al ., 2022). This multi-omics
approach is particularly valuable in oncology, where it aids
in the characterization of tumors, prediction of treatment
responses, and monitoring of disease progression, thereby
facilitating the development of personalized treatment
strategies.

18



Blood

Faeces

Sample Breast milk METABOLOMICS
lissue
Cells...
Svnthesis Y
Chromosomes Chromatin Catabolism
\‘ opening .-\n.llmlhm/
X
M 7§£ X _é) Proteins
DNA Iranscription Translation
ANAANANANAN
GENOMICS mRNA

S 0. 24

TRANSCRIPTOMICS

PROTEOMICS

Fig 1 Picture of Integration of Multi-Omics in Human Biological Systems. (Raufaste-Cazavieilleetal., 2022).

Fig 1 illustrates the interconnected processes of
genomics, transcriptomics, proteomics, and metabolomics
as they relate to human biology and clinical sampling.
Genomics begins with the analysis of chromosomes and
DNA obtained from biological samples such as blood,
tissue, or cells, focusing on understanding the genetic
blueprint that governs biological functions. Upon
chromatin opening, DNA is transcribed into messenger
RNA (mRNA), a process central to transcriptomics, which
studies the complete set of RNA transcripts produced by
the genome under specific circumstances. The mRNA is
then translated into proteins, entering the domain of
proteomics, which explores the structure, function, and
interactions of proteins that drive virtually all biological
processes, including synthesis, catabolism, and anabolism.
Finally, metabolomics examines the small-molecule
metabolites produced during cellular processes, providing
a snapshot of the biochemical activities and the
physiological state of cells. Together, these omics layers
form an integrated framework, enabling a comprehensive
understanding of health, disease mechanisms, and
therapeutic responses at multiple biological levels.

» Clinical Relevance of Multi-Omics in Diagnosis and
Prognosis
The clinical utility of multi-omics technologies
genomics, transcriptomics, proteomics, and metabolomics
has become increasingly vital in enhancing cancer

diagnosis and prognosis. By integrating these diverse
molecular layers, clinicians can uncover comprehensive
insights into tumor heterogeneity and identify actionable
biomarkers that guide early detection and therapeutic
decisions. For example, multi-omics data have been used
to develop robust molecular classifiers that differentiate
between tumor subtypes, predict disease progression, and
suggest patient-specific treatment paths as represented in
table 1 (Hasin et al., 2022). This approach enhances the
granularity of diagnostic frameworks, shifting from
generalized assessments to highly individualized
evaluations, especially in cancers with complex biological
profiles such as liver and breast cancer.

Furthermore, multi-omics facilitates the
identification of prognostic signatures and therapeutic
targets by capturing the dynamic molecular changes
associated with tumor evolution. Integrating omics data
enables clinicians to anticipate resistance mechanisms and
tailor interventions accordingly, minimizing treatment
failures. In liver cancer, multi-omics strategies have
successfully revealed diagnostic biomarkers that
outperform traditional clinical indicators, leading to earlier
intervention and improved patient outcomes (Chen et al.,
2022). As such, the relevance of multi-omics in clinical
oncology is redefining standard protocols, reinforcing the
shift toward precision medicine.
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Table 1 Summary of Clinical Relevance of Multi-Omics in Diagnosis and Prognosis

about an individual's genes.

Aspect Description Clinical Implications Example
Genomic Genomic data refers to the Helps in identifying genetic Identification of BRCAL gene
Data comprehensive information predispositions to diseases and mutations in breast cancer

personalized treatment options. patients.

systems like FHIR.

Proteomic Proteomic data focuses on the Provides insights into disease Use of biomarkers like PSA
Data proteins expressed within a cell biomarkers and therapeutic (Prostate-Specific Antigen) in
or organism. targets. prostate cancer diagnosis.
Metabolomic Metabolomics examines Aids in understanding disease Analysis of blood metabolites
Data metabolites in biological mechanisms and predicting to monitor diabetes
samples like blood or urine. treatment responses. management.
Clinical The process of integrating omics Facilitates more accurate Integration of genomic
Integration data with clinical data through | diagnoses, treatment planning, and | sequencing data into electronic

patient outcomes.

health records (EHRS).

» Enhancing Targeted Therapies Through Integrated
Omics Insights

Integrated omics technologies have significantly
strengthened the landscape of targeted cancer therapies by
revealing a more nuanced understanding of tumor biology.
In glioblastoma, where conventional treatments often fall
short, an integrative multi-omics approach has facilitated
the identification of complex signaling pathways and
resistance mechanisms that were previously elusive (Zhao
et al, 2022). Genomic alterations, when analyzed
alongside transcriptomic and proteomic data, offer
actionable insights into patient-specific oncogenic drivers.
This approach enhances precision by enabling oncologists
to tailor therapies that not only target genetic mutations but
also account for post-transcriptional and metabolic factors
influencing tumor progression.

In addition to improving therapeutic accuracy,
integrated omics  strategies aid in predicting
responsiveness to immunotherapies and novel agents. For
example, multi-omics profiling in head and neck
squamous cell carcinoma identified CD73 as a key
biomarker linked to immunosuppressive tumor
environments, helping stratify patients for anti-CD73
therapies (Shen et al., 2022). By layering information
across omics platforms, researchers and clinicians can
move beyond single-gene targeting to systems-level
interventions, thus maximizing treatment efficacy while
minimizing resistance and adverse effects.

I11. CHALLENGES IN INTEGRATING MULTI-
OMICS DATA INTO HER SYSTEMS

» Interoperability Limitations in Current Health IT
Systems

Interoperability challenges in current health
information technology (IT) systems continue to restrict
the seamless exchange of clinical data across diverse
platforms. Health IT infrastructures often utilize varying
data standards, terminologies, and exchange protocols,
leading to information silos and fragmented patient
records as presented in figure 2 (Torab-Miandoab et al.,
2022). This lack of standardization inhibits the continuity
of care and makes it difficult for healthcare professionals

to access comprehensive patient histories in real-time. In
practice, such limitations result in increased
documentation  workloads,  duplicated  diagnostic
procedures, and delays in treatment, thereby
compromising care quality and efficiency.

These challenges are particularly evident in high-
income countries, where electronic health records (EHRSs)
are widely adopted but remain poorly integrated across
systems and institutions. Despite advances in health
informatics, clinicians often resort to manual data
reconciliation or redundant testing due to poor system
interoperability (Dobrow et al., 2022). The resulting
inefficiencies underscore the need for universal data
standards and integrated frameworks that support real-
time data sharing. Overcoming these barriers is essential
to unlocking the full potential of multi-omics integration
and precision medicine within interoperable HER
environments.

Fig 2 illustrates the core concept of healthcare
interoperability by depicting how various healthcare
entities including hospitals, the NHS, smart homes, smart
clinics, emergency units, clinics, pharmacies, physicians,
caregivers, and patients are meant to be interconnected
through seamless data exchange. However, in relation to
Interoperability Limitations in Current Health IT Systems,
the diagram highlights the ideal but often unmet goal of a
fully integrated network. In reality, many healthcare IT
systems face significant barriers such as incompatible data
standards, lack of uniform regulatory compliance,
fragmented communication protocols, and security
concerns, which prevent smooth interoperability across
these nodes. For instance, electronic health record (HER)
systems in different hospitals may use different formats or
coding languages, making it difficult for smart clinics or
pharmacies to access or interpret the patient data
efficiently. Moreover, smart home devices and emergency
care centers often struggle to integrate with broader
national health systems like the NHS due to technological
silos and privacy restrictions. Therefore, despite the
interconnected vision shown, current interoperability
remains partial, fragmented, and a major bottleneck in
achieving coordinated, efficient patient care.
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Fig 2 Picture of Visual Representation of Healthcare Interoperability Among Various Health Systems and Stakeholders
(Torab-Miandoab et al., 2022).

» Complexity and Heterogeneity of Omics Data Formats

The complexity and heterogeneity of omics data
formats pose major challenges to clinical integration.
Genomics, transcriptomics, proteomics, and
metabolomics datasets each follow different structural
conventions and storage models, often using formats such
as FASTQ, BAM, VCF, mzML, and GTF, which are not
interoperable by default. These formats encapsulate
diverse metadata types, quality metrics, and hierarchical
relationships, complicating cross-omics mapping and
harmonization within electronic health records (EHRs) or
data warehouses. The inconsistencies across analytical
platforms and file specifications significantly impede
scalable data federation and real-time clinical utility
(Grossman et al., 2016).

In addition, the sheer volume and granularity of
omics outputs necessitate rigorous metadata annotation to
ensure traceability and reproducibility. However, the lack
of universally adopted data standards further exacerbates
fragmentation across institutions. This heterogeneity
reduces the reusability and interoperability of omics
datasets unless mapped to widely accepted models like
those aligned with the FAIR (Findable, Accessible,
Interoperable,  Reusable)  principles.  Establishing
comprehensive community-driven standards and reference
ontologies such as those promoted by FAIRsharing
becomes imperative to enable seamless multi-omics
integration, supporting robust and clinically meaningful
insights (Sansone et al., 2019).

» Interoperability Challenges Between Omics Systems
and HER Platforms

Integrating omics data with Electronic Health
Records (EHRs) faces substantial interoperability
challenges due to structural, semantic, and regulatory
mismatches as represented in table 2. Omics datasets are
often produced in non-standardized formats that lack
compatibility with traditional health IT systems designed
around HL7, CDA, or ICD standards. The semantic gap
between high-dimensional molecular data and clinically
actionable phenotypic information further complicates
integration. EHRs are typically optimized for billing and
patient tracking rather than managing large-scale, complex
biological data streams. As a result, omics insights often
remain siloed in research environments, limiting their
translational value in clinical decision-making (Kush et al.,
2008).

Moreover, discrepancies in data models, coding
systems, and terminologies such as differences between
SNOMED CT, LOINC, and omics-specific ontologies
hinder semantic interoperability. Ontological
misalignments lead to inconsistent mappings and data loss
during integration. This misalignment is intensified by the
lack of universally accepted frameworks for
contextualizing multi-omics in clinical narratives.
Addressing these barriers requires harmonized metadata
standards and ontology bridging techniques, which can
align molecular descriptors with clinical vocabularies to
promote seamless, interoperable data flows between
systems (Bodenreider& Cornet, 2020)
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Table 2 Summary of Interoperability Challenges Between Omics Systems and HER Platforms

Issue Description Impact Potential Solutions
Data Difficulty in ensuring Leads to incompatibility Develop uniform data formats
Standardization consistency across omics data. between systems and errors and standards.
Challenges in interpretation.
Data Security Protecting sensitive health and Risks of data theft, loss of Implement stronger

omics data from breaches.

patient privacy, and
regulatory violations.

encryption and access
controls.

Data Privacy

Ensuring the confidentiality of

personal health information.

Violation of patient rights,
trust issues, and legal
consequences.

Adhere to HIPAA and GDPR
regulations for data privacy.

Interoperability
Issues

Lack of compatibility across

different health IT systems.

of data between platforms
and hinders collaboration.

Limits the seamless exchange

Adopt standards like FHIR
and HL7 for better
interoperability.

IV. FHIR AS A FRAMEWORK FOR CLINICAL
INTEROPERABILITY

» Core Principles and Components of the FHIR Standard

The Fast Healthcare Interoperability Resources
(FHIR) standard, developed by HL7 International, is
designed to facilitate the exchange of healthcare
information electronically. At its core, FHIR comprises
modular components known as ‘“Resources,” which
represent key healthcare concepts such as patients,
observations, and medications. Each resource is defined by
a set of data elements and relationships, allowing for
flexibility and extensibility in representing diverse
healthcare data as represented in table 3 (HL7
International, 2022). The FHIR specification outlines the
structure and semantics of these resources, providing a
foundation for consistent data exchange across different
healthcare systems.

In addition to resources, FHIR incorporates a
comprehensive specification that includes foundational
infrastructure, implementer support, security and privacy
guidelines, conformance testing, terminology services,
and linked data methods. This specification supports
various exchange mechanisms, including RESTful APIs,
messaging, and  document sharing, enabling
interoperability across diverse platforms and applications.
The modular nature of FHIR allows for the combination
and customization of resources to meet specific healthcare
needs, promoting efficient and scalable data exchange
solutions (Braunstein, 2022). Through its design, FHIR
aims to streamline healthcare interoperability, enhancing
the accessibility and utility of health information across
systems and stakeholders.

Table 3 Summary of Core Principles and Components of the FHIR Standard

Principle

Description

Relevance to FHIR

Example

Interoperability

The ability for different
health systems to exchange
data seamlessly.

FHIR promotes interoperability
by providing standardized data
formats.

FHIR enables data exchange
between different EHR systems.

increasing amounts of data
as the system grows.

using RESTful web services for
efficient data handling.

Flexibility The ability to adapt to FHIR supports customization, Custom FHIR profiles can be
different use cases and making it adaptable for diverse tailored for specific clinical
environments. healthcare applications. environments.
Modularity The design of components FHIR is modular, allowing the FHIR's modular nature allows
that can be used integration of individual integrating lab results or clinical
independently or together. resources into larger systems. notes into EHRs.
Scalability The ability to handle FHIR supports scalability by Large health systems can scale

FHIR to accommodate
increasing patient data volumes.

» Advantages of Using FHIR for Scalable Data
Exchange

FHIR (Fast Healthcare Interoperability Resources)
has been recognized as a critical advancement for scalable
data exchange in healthcare systems due to its flexible,
modular, and RESTful architecture. According to Mandel
et al. (2016) as presented in figure 3, FHIR supports
streamlined integration by allowing lightweight, web-
based interactions, thereby facilitating real-time data
sharing across diverse health applications. This capability
enhances interoperability among electronic health records
(EHRs), mobile health (mHealth) apps, and clinical

decision support systems. For example, using FHIR APIs,
a mobile diabetes management app can pull patient data
directly from a hospital's EHR without needing complex
middleware. Such seamless interactions improve clinical
workflows and enable a patient-centered approach to care,
where timely access to data is essential for decision-
making.

Moreover, FHIR's scalability is enhanced through its
resource-based model, which allows data to be exchanged
in discrete, manageable chunks. Bender and Sartipi (2013)
highlight that FHIR's resource approach, combined with
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its use of widely adopted web standards like HTTP,
OAuth, and JSON, significantly lowers the barriers for
new systems to connect. This design enables rapid
development of interoperable solutions across different
institutions, regardless of the underlying IT infrastructure.
Furthermore, FHIR profiles allow customization for
specific clinical contexts, ensuring that even as datasets
grow more complex with genomic or omics data,
standardization and interoperability are maintained
efficiently. These advantages make FHIR an ideal standard
for achieving scalable and sustainable health data
exchange globally.

Fig 3 highlights key Advantages of Using FHIR for
Scalable Data Exchange by showcasing how the FHIR
(Fast Healthcare Interoperability Resources) standard

supports healthcare providers. FHIR enhances streamlined
workflow and efficiency, making clinical operations faster
and more organized. It also enables real-time analytics,
which is critical for timely clinical decision-making and
patient management. Additionally, FHIR empowers
mHealth solutions, allowing mobile health applications to
easily integrate with broader health IT systems. Its support
for scalability and adaptability ensures that systems can
evolve and expand as technological needs grow,
facilitating interoperability across various healthcare
settings. Lastly, FHIR aids in regulatory compliance,
helping institutions meet legal and quality standards
efficiently. Together, these advantages demonstrate how
FHIR fosters seamless, secure, and scalable data exchange
necessary for modern, patient-centered healthcare
ecosystems.
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Fig 3 Picture of Key Advantages of FHIR for Scalable Data Exchange in Healthcare Systems (Mandel et al., 2016)

» Application of FHIR to Genomics and Multi-Omics
Integration

The application of FHIR to genomics and multi-
omics integration presents significant opportunities for
advancing personalized medicine. FHIR offers a
framework that can seamlessly integrate diverse omics
data, including genomics, transcriptomics, proteomics,
and metabolomics, by utilizing its flexible data models and
standardized formats (Alterovitz et al., 2015). This
integration is essential for creating a comprehensive view
of a patient’s molecular profile, enabling clinicians to
make more informed decisions based on genetic,
molecular, and clinical data. For example, by employing
FHIR’s interoperability standards, multi-omics data from
various sequencing platforms can be easily incorporated
into Electronic Health Records (EHR), facilitating data
sharing and enabling personalized treatment plans.

Moreover, the use of FHIR in multi-omics integration
fosters a more efficient data exchange process in
healthcare systems, allowing for real-time updates and
data access across multiple platforms. This capability is
crucial in genomic medicine, where timely data exchange
is necessary for decision-making in precision oncology
(Regev & Mazin, 2022). With FHIR’s emphasis on

modularity and scalability, it is possible to support a
variety of multi-omics applications, thus improving the
integration of genomics into routine clinical practice and
paving the way for more personalized, effective
treatments.

V. DESIGN AND FUNCTION OF FHIR-
COMPLIANT CLINICAL DATA PIPELINES

» Architecture of Clinical Data Pipelines for Omics
Integration

The architecture of clinical data pipelines designed
for omics integration must balance scalability,
interoperability, and data fidelity. At the foundational
layer, raw omics data—derived from sequencing platforms
enters the pipeline through data acquisition modules that
ensure format standardization, such as FASTQ or VCF.
These data are then processed through transformation
engines that normalize, annotate, and map results to
clinically interpretable markers using established
ontologies. Middleware services apply mapping logic to
align omics features with patient-centric attributes housed
within EHRs, enabling bi-directional traceability and
clinical utility (Alterovitz et al., 2015).
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An effective pipeline must also adopt the FAIR
principles Findable, Accessible, Interoperable, and
Reusable to ensure that integrated datasets can be
dynamically retrieved and repurposed in both clinical and
research settings. Modular APIs based on FHIR resources
facilitate real-time data flow between omics repositories
and clinical platforms. This architecture not only improves
data liquidity but also enables algorithmic analysis for
clinical decision support. The architecture’s modularity
supports layered validation, access control, and context-
aware alerts, ensuring that omics insights can be safely and
meaningfully incorporated into care workflows
(Wilkinson et al., 2016).

» Mapping Omics Data to FHIR Resources and Profiles

Mapping omics data to FHIR resources involves a
systematic translation of molecular profiles such as gene
variants, expression levels, or proteomic markers into
structured clinical elements. This mapping process utilizes
FHIR’s Genomics Implementation Guide, which extends
core resources like Observation, DiagnosticReport, and

MolecularSequence to represent genomic content in a
standardized format. For example, a somatic mutation
detected in a cancer panel can be encoded using the
Observation resource with LOINC and HGVS
nomenclatures, preserving both the biological and clinical
semantics as represented in figure 4 (Alterovitz et al.,
2015).

Profiles are essential in ensuring that FHIR resources
are appropriately constrained for specific omics use cases.
Custom FHIR profiles enable healthcare systems to define
cardinality, terminology bindings, and invariant rules that
are context-sensitive to genomic workflows. Tools like the
FHIR IG Publisher and Forge assist in authoring profiles
that reflect institutional or research-specific schemas.
Moreover, these structured mappings allow for semantic
interoperability, enabling downstream systems such as
decision-support engines or research registries to consume
omics data in a consistent, computable form (Mandl et al.,
2016).
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Fig 4 illustrates a structured flow that mirrors the
process of mapping omics data to FHIR resources and
profiles. The REST client initiates communication, similar
to how omics data sources interact with an FHIR server
endpoint. The CSP Endpoint and REST Handler function
as intermediaries, directing data requests appropriately,
just like translating omics data into structured FHIR
formats. The FHIR Service at the core handles dispatching
requests and managing FHIR-specific interactions,
reflecting how omics datasets (genomics, proteomics, etc.)
must be mapped onto corresponding FHIR resources such
as Observation, Molecular Sequence, and custom profiles.
The bottom layer, consisting of subclasses and processors,
represents the specialized logic needed to interpret and
manage different types of omics interactions, ensuring data
are accurately processed, validated, and stored within the
FHIR framework. This layered approach supports efficient
integration of complex biological data into healthcare
systems, enabling better interoperability, analytics, and
precision medicine applications.

» Ensuring Real-Time, Secure, and Structured Data Flow

Ensuring a secure and structured real-time data flow
is vital for successful omics integration within clinical
systems. Data flow frameworks must be robust, supporting

genomic and multi-omics data as they move through
clinical infrastructures. Real-time integration capabilities
enable clinicians to access relevant genetic and medical
data when needed, facilitating more informed decision-
making as represented in table 4 (Chen, Li, & Wu, 2022).
These systems ensure seamless data transfer across various
sources while minimizing risks related to data loss,
corruption, or breaches. Real-time systems also help in
reducing latency, ensuring that genomic data is promptly
available for clinical applications, such as personalized
treatment plans.

Moreover, structuring the data flow within health IT
systems guarantees that all information adheres to privacy,
security, and interoperability standards, such as those
outlined by the FHIR framework (Swan & El-Haddad,
2022). By ensuring that the data is organized in a
standardized format, clinicians can easily query and
analyze diverse datasets. With the integration of omics
data, it becomes possible to customize treatment regimens
to individual patients, enhancing personalized medicine.
However, maintaining the security and privacy of the data
in transit is essential to meet healthcare regulations and
safeguard patient information.

Table 4 Summary of Ensuring Real-Time, Secure, and Structured Data Flow

Aspect Description Importance to Data Flow Example
Real-Time | The continuous transfer of data Essential for timely decision- Real-time transmission of patient
Data Flow across systems without delay. making and updates in clinical vitals from monitoring devices to
settings. EHR.
Data Protecting data from Ensures the confidentiality and Use of encryption protocols to

Security unauthorized access or breaches. | integrity of sensitive health data.

protect patient records during
transmission.

Data Organizing data in a
Structure standardized and consistent

Ensures compatibility across
different systems and enhances
format. the use of integrated data.

Structuring genomic data in FHIR
resources for seamless integration
with clinical data.

Compliance | Adhering to legal and regulatory
with standards, such as HIPAA.
Regulations

Necessary to ensure that data
flow meets legal requirements
and ethical standards.

Ensuring patient data transmission
complies with HIPAA regulations
in the U.S.

VI. CLINICAL IMPACT AND DECISION
SUPPORT ENHANCEMENT

» Improving Clinical Decision-Making with Integrated
Omics Insights

Integrating omics data into clinical workflows
enhances the precision and personalization of medical
decision-making. By combining genomic, transcriptomic,
and proteomic profiles with a patient’s clinical history,
clinicians are empowered to identify specific molecular
mechanisms underlying disease phenotypes. For instance,
in oncology, integrating tumor-specific genetic mutations
into electronic health records enables oncologists to select
targeted therapies that align with the patient’s unique
biomarker profile, rather than relying solely on
population-based treatment protocols (Sboner&Elemento,
2016) as represented in figure 5. This molecular-level
insight improves diagnostic accuracy, minimizes adverse
drug reactions, and increases treatment efficacy.

Moreover, decision-support systems powered by
integrated omics data provide real-time clinical alerts, risk
stratification models, and therapy recommendations based
on curated evidence and molecular interpretation
frameworks. These systems help clinicians assess the
potential impact of a treatment regimen on disease
progression or recurrence by analyzing patient-specific
omics signatures alongside phenotypic data. The
implementation of such tools also encourages shared
decision-making between providers and patients, fostering
transparency and confidence in personalized care
strategies (McGuire et al., 2013). Through integrated data
interpretation, healthcare providers are equipped to deliver
precision medicine that is not only scientifically grounded
but also dynamically adaptable.

Figure 5 illustrates how multi-omics data—
comprising genomics, transcriptomics, and proteomics—
serve as foundational inputs for enhancing precision
medicine. These omics layers offer deep molecular
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insights such as patient-specific genetic mutations, mRNA
expression profiles, and protein signatures, which are
integrated into electronic health records (EHRs) and
analyzed through clinical decision support systems
(CDSS). The CDSS utilizes curated molecular
interpretation frameworks to deliver real-time risk
stratification models, clinical alerts, and targeted therapy
recommendations. This integration enables clinicians to
move beyond generalized treatment protocols by tailoring
interventions based on individual biomarker profiles, thus

improving diagnostic accuracy, minimizing adverse drug
reactions, and enhancing therapeutic outcomes.
Additionally, the model supports shared decision-making
by aligning molecular data with phenotypic information,
fostering transparency between healthcare providers and
patients. Overall, the diagram demonstrates how
integrated omics transforms static patient data into
dynamic, actionable intelligence for precision diagnostics
and adaptive care.

Improved Clinical
Decision-Making
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Fig 5 Diagram illustration of Integrated Omics for Precision Clinical Decision-Making and Personalized Therapy Selection

» Supporting Precision Treatment Plans Within HER
Workflows

The integration of omics data into electronic health
records (HER) is a transformative approach to enhancing
precision treatment plans. By incorporating genomic,
transcriptomic, and proteomic data, clinicians can tailor
treatments to individual patients, optimizing outcomes
based on their specific molecular profiles (Martinez-
Alvarez et al., 2022). This integration enables real-time
access to personalized treatment recommendations and
potential drug interactions, thus improving decision-
making processes within the HER workflows. Moreover,
patient data in omics form can be continuously updated to
reflect evolving health conditions, ensuring that the
treatment strategies remain relevant and responsive to
changes in patient health (Shen et al., 2022).

For precision medicine to be fully effective, the
seamless incorporation of omics data into the clinical
workflow is essential. Advances in data interoperability
and standardization are necessary to allow the smooth flow
of complex biological data into HER systems (Martinez-
Alvarez et al., 2022). Furthermore, clinicians can access
comprehensive patient profiles that merge clinical,
molecular, and genetic data, resulting in informed
treatment decisions. This holistic approach ensures that
personalized treatment plans are not only based on clinical
history but also on underlying molecular characteristics,
thereby improving patient outcomes in precision medicine
(Shen et al., 2022).
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» Facilitating Research and Outcome Tracking Through
Enriched Datasets

The integration of omics data into clinical workflows
significantly enhances research capabilities and enables
more accurate outcome tracking. By combining clinical
and molecular data, researchers can develop more robust
models for understanding disease progression and
predicting treatment responses. Enriched datasets,
including genomic, transcriptomic, and proteomic data,
provide insights into complex biological processes that
influence patient outcomes (Berman &Karki, 2022) as
represented in figure 6 and table 5. These data also enable
the identification of novel biomarkers, contributing to the
development of personalized medicine strategies and
improving patient stratification in clinical trials (Zhang et
al., 2022).

Moreover, the ability to track long-term patient
outcomes is greatly enhanced when omics data are
incorporated into clinical research databases. This enables
retrospective and prospective studies to monitor the effects
of various treatments on individual patients over time,
offering deeper insights into the efficacy of interventions

(Berman &Karki, 2022). The enriched datasets provide a
more comprehensive view of patient health, allowing
researchers to correlate molecular markers with clinical
outcomes, which is crucial for advancing precision
medicine and improving treatment efficacy (Zhang et al.,
2022).

Fig 6 illustrates the interconnected flow of healthcare
encounters, organizations, practitioners, and patients,
emphasizing how  structured relationships  and
standardized data formats can facilitate research and
outcome tracking through enriched datasets. By linking
patient encounters across hospitals, wards, and general
practice settings with specific practitioners and healthcare
organizations, a continuous, detailed picture of patient care
journeys is formed. This interconnected framework
enables researchers to track health outcomes more
precisely, analyze healthcare delivery patterns, and
identify trends across different settings. Standardized data
mapping, like the one shown here, enriches datasets,
making them more comprehensive and valuable for large-
scale research studies and predictive analytics.
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Table 5 Summary of Facilitating Research and Outcome Tracking Through Enriched Datasets

Datasets such as genomic, clinical, and
environmental data.

Aspect Description Importance to Research and Example
Outcome Tracking
Enriched Combining diverse data types Enhances the depth and Using multi-omics data (genomics,

breadth of research, enabling | transcriptomics, proteomics) to track
more robust analyses.

disease progression.

Access clinicians with timely access
to updated datasets.

Outcome Monitoring patient outcomes | Provides valuable insights into Tracking the effectiveness of
Tracking over time using integrated treatment effectiveness and personalized cancer treatments
data. patient response. based on genomic data.
Data Merging clinical and omics Facilitates a holistic view of Integrating EHR data with omics
Integration data into a unified platform. patient health for improved data to predict treatment outcomes.
decision-making.
Real-Time Providing researchers and Supports the agility and Researchers accessing updated

adaptability of research and
clinical decisions.

multi-omics data to adjust clinical
trials in real-time.

VIl. CONCLUSION AND FUTURE PROSPECTS

» Summary of Benefits of FHIR-Based Multi-Omics
Integration

The integration of multi-omics data into clinical
workflows using FHIR (Fast Healthcare Interoperability
Resources) offers substantial benefits in enhancing
personalized healthcare. FHIR’s standardized framework
allows for the seamless exchange of complex genomic,
proteomic, and clinical data, ensuring that information
from multiple sources is accessible and interoperable
across various health systems. This capability fosters a
holistic view of patient health, enabling healthcare
providers to make informed decisions based on
comprehensive data rather than relying solely on
traditional clinical observations. As a result, personalized
treatment plans can be tailored more effectively to
individual patients, improving outcomes and reducing
unnecessary treatments.

Furthermore, FHIR-based integration allows for the
real-time updating and sharing of patient data across
healthcare systems. This enhances clinical decision-
making by providing clinicians with access to the most
current and accurate information. Additionally, the
integration of multi-omics data can accelerate medical
research by linking genetic and molecular insights to
clinical conditions. It supports the development of more
precise diagnostic tools and therapies, ultimately
facilitating faster advancements in personalized medicine.
By ensuring data accessibility, security, and
standardization, FHIR-based multi-omics integration
provides significant improvements in both clinical and
research settings.

» Future Directions in AI-Driven and Predictive Clinical
Applications

The future of Al-driven and predictive clinical
applications holds tremendous potential to revolutionize
healthcare by further enhancing personalized medicine
and improving patient outcomes. With advancements in
machine learning and deep learning, Al can analyze vast
amounts of multi-omics data to identify patterns that might
not be immediately evident to human clinicians. These
patterns can inform more accurate predictions regarding
disease progression, response to treatment, and patient

prognosis. As Al continues to evolve, it is expected to
enable even more precise and individualized treatment
strategies, driving a shift toward preventative care and
earlier intervention.

In the coming years, Al is also expected to play a
significant role in refining clinical decision support
systems by integrating real-time data from a variety of
sources, including electronic health records, wearables,
and genomics. This could lead to the development of
dynamic, predictive models that provide actionable
insights tailored to the needs of each patient. Furthermore,
as Al systems are increasingly incorporated into routine
clinical workflows, the focus will shift toward ensuring
ethical use, enhancing transparency, and improving data
privacy and security. These innovations promise to create
a more efficient, effective, and accessible healthcare
system, with Al acting as a key driver of personalized,
data-informed care.

» Need for Ongoing Collaboration Among Stakeholders
in Healthcare IT

Ongoing collaboration among healthcare IT
stakeholders is crucial to the successful integration of
multi-omics data and the development of Al-driven
solutions in clinical practice. Healthcare professionals,
researchers, data scientists, and technology providers must
work together to ensure that data is accurate, accessible,
and interpretable. By fostering collaboration across these
disciplines, innovations in precision medicine and Al
applications can be more effectively implemented and
scaled. This collective effort will help bridge gaps in
understanding between clinical practice and technological
advancement, ensuring that the tools developed are both
clinically relevant and technically sound.

Furthermore, continuous collaboration is essential for
addressing the challenges of interoperability, data security,
and privacy. As more healthcare data is collected and
shared across various systems, the need for standardized
protocols and robust security measures becomes
increasingly important. Stakeholders must collaborate on
developing solutions that address these issues while
ensuring that the flow of data remains seamless and safe.
This ongoing dialogue will be critical to the success of Al
applications in healthcare, enabling the creation of systems
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that are both secure and capable of providing actionable
insights to improve patient care.
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