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Abstract 
The maritime industry is increasingly confronted with a myriad of cybersecurity challenges exacerbated by extreme 

environmental conditions, technological advancements, and heightened reliance on automation. This review paper discusses 

the intersection of these factors, focusing on the adoption of artificial intelligence (AI)-based intrusion detection systems 

(IDS) and network automation as vital strategies for mitigating cybersecurity risks. The paper begins by outlining the unique 

cybersecurity threats faced by the maritime sector, which include data breaches, phishing attacks, and malware threats, all 

amplified by adverse weather and geographical isolation. In light of these challenges, the rationale for integrating AI-driven 

solutions into maritime operations is discussed. AI-based IDS can enhance threat detection capabilities through advanced 

machine learning algorithms that adapt to evolving cyber threats while minimizing false positives. Additionally, network 

automation can improve connectivity and data security, facilitating real-time monitoring and response to incidents. The review 

also addresses the critical need for collaboration between maritime and technology industries, emphasizing how partnerships 

can foster innovation and provide tailored solutions to the sector’s specific needs. Furthermore, the paper examines current 

implementations and case studies that illustrate successful applications of AI and automation in adverse maritime conditions. 

While recognizing the potential benefits, the review highlights the technical and operational challenges inherent in these 

implementations, including data integration, regulatory compliance, and cultural differences between sectors. Ultimately, this 

paper aims to provide a comprehensive overview of the state of maritime cybersecurity and the pivotal role of AI and 

automation in shaping a resilient, secure maritime future. The findings underscore the importance of ongoing research and 

development, collaborative efforts, and the necessity of adaptable strategies to safeguard maritime operations against the 

evolving landscape of cyber threats. 
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I. INTRODUCTION 

 
A. Overview of Cybersecurity Challenges in the Maritime 

Industry. 
The maritime industry, characterized by its reliance 

on increasingly sophisticated digital systems, faces a 

growing number of cybersecurity challenges. As vessels 

and ports integrate more operational technologies (OTs) 
and information technologies (ITs) to improve efficiency, 

they become more vulnerable to cyber-attacks. One 

significant challenge is the complexity of maritime 

networks, which often involve a combination of aging 

legacy systems and newer digital platforms. This 

combination creates potential entry points for 

cybercriminals, especially as many of these older systems 

were not designed with modern cybersecurity in mind 

(Nawaz et al., 2024). 
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A notable risk comes from the maritime industry's 

dependence on satellite communications for both 

operational and commercial purposes. Cybercriminals can 

exploit vulnerabilities in these systems to intercept or 

manipulate communications, potentially leading to 

significant disruptions in navigation, cargo handling, or 

vessel tracking (Ijiga et al., 2024). This issue is 

exacerbated by the fact that maritime vessels often operate 

in isolated areas where real-time monitoring and support 

are limited, making it more difficult to detect and respond 

to cyber threats promptly. 

 

Also, human factors contribute significantly to 

cybersecurity risks. Crew members may lack adequate 

training in cybersecurity protocols, inadvertently exposing 

systems to malware or phishing attacks. This is further 

complicated by the transient nature of maritime personnel, 

with crews frequently changing, making consistent 

cybersecurity practices challenging to enforce (Jones et al., 

2016). 

 

In addition, the increasing connectivity between 

ships, ports, and logistics companies through the Internet 

of Things (IoT) adds another layer of complexity. While 

IoT technologies improve operational efficiency, they also 

widen the attack surface. Hackers could potentially target 

these connected systems, disrupting the supply chain, and 

causing significant economic and operational impacts 

(Cho et al., 2022). The interconnectedness of maritime 

operations means that a single cybersecurity breach in one 

part of the system can have cascading effects throughout 

the industry. 

 

The illustrations in figure 1 depict an overview of the 

cybersecurity within the maritime space designed to allow 

offshore vessels to access real time data and critical 

updates under secured conditions. 

 

 
Fig 1 Overview of Cybersecurity within the Maritime Environment. 

 

Extreme environmental conditions significantly 

impact maritime networks and systems, posing challenges 

to both cybersecurity and overall operational reliability. 

Maritime operations occur in harsh environments, where 

weather conditions such as storms, high humidity, 

saltwater exposure, and extreme temperatures can degrade 

network infrastructure, disrupt communication systems, 

and expose vulnerabilities in both hardware and software 

(Wei et al., 2021). For instance, strong winds and rough 

seas can physically damage equipment, while 
electromagnetic interference from storms can disrupt 

satellite communications, impairing the functioning of 

critical systems, such as GPS, AIS (Automatic 

Identification System), and radar (Yuan et al., 2017). 

These environmental challenges are exacerbated by 

the isolated nature of maritime operations, where ships and 

offshore platforms often operate far from maintenance 

hubs and reliable network support. Prolonged exposure to 

such conditions can weaken system components, leading 

to increased risk of hardware failures or compromised 

communication links (Alqurashi et al., 2022). Moreover, 

saltwater corrosion and humidity can affect the integrity of 

electronic systems and network devices, leading to 

increased downtime and the need for frequent repairs or 
replacements. 

 

Extreme conditions not only strain physical systems 

but also create opportunities for cyber-attacks. 

Environmental factors can cause intermittent connectivity, 
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leading to delays in updates or patches that are crucial for 

securing maritime networks. Cyber attackers may exploit 

such downtimes to infiltrate systems, especially when 

vessels are operating autonomously with limited human 

oversight (Tabish & Chaur-Luh, 2024). Additionally, 

during environmental crises such as storms, maritime 

personnel are often preoccupied with safety operations, 

potentially neglecting cybersecurity protocols, thus 

heightening the risk of successful attacks. 

 

In extreme environments, maintaining secure and 

reliable communication systems is a significant challenge. 

Satellite communication, the backbone of maritime 

networks, is particularly vulnerable to environmental 

disruptions, leading to loss of real-time data transmission 

and leaving vessels exposed to navigational risks 

(Alqurashi et al., 2022). As maritime operations increase 

their reliance on automation and the Internet of Things 

(IoT), ensuring the resilience of these systems in harsh 

environmental conditions becomes paramount for 

maintaining both cybersecurity and operational integrity. 

Figure 2 illustrates the maritime communications 

workflow execution framework, where communication 

workflows are scheduled and managed using cloud-based 

resources. Users submit communication workflows to a 

task-oriented smart controller, which analyzes them and 

categorizes the resulting tasks into three groups: high-

performance latency-aware prioritized tasks, 

computational tasks, and data-oriented tasks. These tasks 

are then forwarded to the maritime communication 

workflow scheduler. Simultaneously, the cloud computing 

resources are assessed by a resource-aware smart 

controller, which classifies them into three types: high-

performance latency-aware resources, computation-aware 

resources, and data-aware resources. These resources are 

also submitted to the scheduler. The maritime 

communication workflow scheduler matches tasks to 

appropriate cloud resources and dispatches them to the 

execution engine. Once execution is complete, the results 

are returned to the user (Ahmad et al., 2023). 

 

 
Fig 2 A Framework for Maritime Communication Workflows Execution. 

Source: Ahmad, Z., Acarer, T., & Kim, W. (2023). Optimization of maritime communication workflow execution with a 

task-oriented scheduling framework in cloud computing 

 

B. Motivation for AI-Based Solutions 
The maritime industry is increasingly relying on 

automation and digital technologies to improve 

operational efficiency, safety, and profitability. This 

digital transformation is driven by advancements in 
artificial intelligence (AI), machine learning, the Internet 

of Things (IoT), and robotics, which are helping to 

optimize navigation, cargo handling, and overall vessel 

management (Fruth & Teuteberg, 2017). One of the most 

significant applications of automation in maritime 

operations is the rise of autonomous ships, which utilize 

advanced navigation systems and sensors to operate with 

minimal human intervention. These vessels can 

significantly reduce operational costs and human error, 
while also enhancing safety and fuel efficiency (Evensen 

2020). 
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Digital technologies are also transforming port 

operations through automation in cargo handling and 

logistics management. Automated cranes, guided vehicles, 

and digital tracking systems enable ports to manage cargo 

more efficiently, reducing turnaround times and improving 

supply chain coordination (Awotiwon et al., 2024). These 

innovations in port automation also facilitate real-time 

tracking of cargo, allowing for better transparency and 

coordination between shipping companies, port 

authorities, and logistics providers. 

 

In addition, the IoT is playing a crucial role in the 

digitization of maritime operations. By connecting ships, 

ports, and offshore platforms through smart sensors and 

devices, IoT enables real-time monitoring of equipment 

performance, fuel consumption, and environmental 

conditions (Idoko et al., 2024). This data-driven approach 

helps in predictive maintenance, reducing the likelihood of 

equipment failures, and ensuring the operational readiness 

of vessels even in challenging conditions. For instance, 

sensors can detect mechanical issues before they become 

critical, allowing for timely maintenance and avoiding 

costly downtime. 

 

However, the increasing reliance on automation and 

digital technologies also raises cybersecurity concerns. As 

more systems become interconnected, the attack surface 

for cyber threats expands, making maritime operations 

vulnerable to potential disruptions (Tam & Jones, 2018). 

Protecting these digital infrastructures from cyber-attacks 

becomes a critical priority, especially as the industry 

moves toward more autonomous and IoT-enabled 

operations. 

 

The adoption of AI-based Intrusion Detection 

Systems (IDS) and network automation in maritime 

cybersecurity is increasingly necessary to address the 

growing sophistication of cyber threats and the complexity 

of modern maritime networks. Traditional IDS, which rely 

on predefined signatures of known threats, are often 

insufficient for identifying emerging, unknown, or 

evolving threats. AI-based IDS offer a significant 

advantage by using machine learning algorithms to detect 

anomalies and patterns indicative of new or evolving 

cyberattacks, making them particularly suited for complex 

and dynamic maritime environments (kumar et al., 2021). 

 

One of the key rationales for using AI in IDS is its 

ability to process vast amounts of data in real-time and 

identify subtle irregularities that might escape traditional 

systems. Maritime operations generate large volumes of 

data from various sources, such as navigation systems, 

onboard sensors, and communication networks. AI-based 

IDS can continuously monitor this data, detect abnormal 

patterns, and trigger alerts for potential security breaches 

before they escalate into more severe incidents 

(Katterbauer 2022). This proactive approach reduces the 

time required to detect and respond to attacks, ultimately 
enhancing the overall security posture of maritime 

networks. 

 

 

Additionally, AI-driven automation can improve 

resilience during cyberattacks by autonomously applying 

security patches, updating firewall configurations, or 

deploying additional defensive measures based on the 

nature of the threat (Katterbauer 2022). Given that 

maritime operations often occur in remote locations with 

limited access to real-time IT support, the ability to 

automate threat detection and response significantly 

enhances the system's security. This is especially 

important for vessels and offshore platforms where manual 

intervention may not be immediately available. 

 

C. Objectives of the Review 
The primary objective of this review is to analyse 

how AI-based Intrusion Detection Systems (IDS) and 

network automation can be effectively deployed to 

mitigate cybersecurity risks in maritime operations, 

particularly under extreme environmental conditions. As 

cyber threats continue to evolve, maritime systems, which 

are becoming increasingly digital and interconnected, are 

exposed to new vulnerabilities (Tam & Jones, 2018). 

Therefore, the review seeks to provide a comprehensive 

understanding of the current cybersecurity landscape in the 

maritime industry, identify the challenges posed by 

extreme environments, and assess the capabilities of AI-

driven solutions in addressing these challenges. 

 

Another key objective is to evaluate the effectiveness 

of AI-based IDS in detecting and mitigating emerging 

cyber threats in maritime networks. Traditional IDS 

models often struggle to keep up with new, unknown 

attacks, whereas AI-based systems can adopt machine 

learning to identify anomalies and suspicious patterns that 

signal potential breaches (kumar et al., 2021). This review 

aims to highlight the potential of AI to improve threat 

detection, particularly in environments where traditional 

methods may fail. 

 

Finally, this review will examine the role of network 

automation in maintaining operational continuity during 

cyberattacks or environmental disruptions. Network 

automation, powered by technologies such as Software-

Defined Networking (SDN) and Network Function 

Virtualization (NFV), allows for real-time reconfiguration 

of networks to isolate compromised systems, ensuring the 

overall resilience of maritime operations (Katterbauer, 

2022). By assessing case studies and research on 

automated network defense, the review will underscore 

how these technologies can enhance the security and 

reliability of maritime communication systems. 

 

II. CYBERSECURITY THREATS IN 

MARITIME ENVIRONMENTS 

 

A. Types of Cybersecurity Threats 
The maritime industry faces a diverse range of 

cybersecurity threats, driven by the increasing digitization 

of operations and reliance on interconnected systems. 
These threats pose significant risks to the safety, security, 

and efficiency of maritime operations, especially in the 

context of cyber-physical systems that control critical 

functions such as navigation, cargo management, and 

communication. 
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 Malware Attacks 
Malware, including ransomware, is one of the most 

common cybersecurity threats in the maritime sector. 

Ransomware attacks encrypt critical systems, such as 

those used for cargo tracking or navigation, demanding a 

ransom to restore functionality. A notable example was the 

2017 attack on the global shipping company Maersk, 

where the NotPetya malware caused operational disruption 

across ports and shipping lines, resulting in a multi 

million-dollar loss (Adu-Twum et al., 2024). Malware can 

also be introduced via infected USB devices, emails, or 

compromised software updates, making it crucial for 

maritime organizations to maintain robust malware 

defenses (Tam & Jones, 2018). 

 Phishing and Social Engineering 
Phishing and social engineering attacks target 

individuals within maritime organizations to gain 

unauthorized access to networks or sensitive information 

as shown in figure 3. Cybercriminals use fraudulent 

emails, messages, or websites to deceive employees into 

revealing login credentials or downloading malicious 

software. These attacks exploit human vulnerabilities 

rather than technical ones, making them harder to detect 

and prevent (Ayoola et al., 2024). In a maritime context, 

social engineering attacks can lead to unauthorized access 

to ship control systems, cargo manifests, or financial 

transactions. 

 

 
Fig 3 Phishing as a Cyberthreat in the Maritime Space. 

 

 Denial-of-Service (DoS) and Distributed Denial-of-

Service (DDoS) Attacks 
Denial-of-Service (DoS) and Distributed Denial-of-

Service (DDoS) attacks aim to disrupt the availability of 

network services by overwhelming systems with a flood of 

traffic. In the maritime industry, such attacks can cripple 

communication networks, GPS, or navigation systems, 

rendering vessels unable to operate effectively (Jones et 

al., 2016). DDoS attacks, in particular, are challenging to 

mitigate, as they often involve multiple compromised 

systems sending massive volumes of data to the target. 

This type of attack can paralyze port operations or disable 

critical onboard systems, leading to severe operational 

delays and financial losses. 

 

 Supply Chain Attacks 
In the highly interconnected maritime industry, 

supply chain attacks represent a growing threat. These 

attacks occur when cybercriminals compromise third-

party vendors, suppliers, or service providers to infiltrate 

maritime networks. For example, a compromised software 

update from a vendor could introduce malware into a 
ship’s control systems, or a third-party service provider 

could inadvertently expose sensitive data (Nawaz et al., 

2024). With the growing reliance on outsourced 

technologies and services, the maritime industry is 

vulnerable to supply chain attacks that can have 

widespread effects across multiple operations. 

 

 GPS Spoofing and Jamming 
GPS spoofing and jamming are unique threats to the 

maritime industry, as vessels heavily rely on satellite-

based navigation systems. Spoofing involves transmitting 

fake GPS signals to mislead a ship’s navigation system, 

causing it to follow an incorrect route. Jamming, on the 

other hand, disrupts GPS signals, preventing vessels from 

receiving accurate location data (Androjna & Perkovič, 

2021). These attacks can be used to hijack vessels, reroute 

them into dangerous waters, or cause collisions. Given the 

critical role of GPS in navigation, GPS spoofing and 

jamming pose serious risks to maritime safety. 

 

The conceptual framework of GPS spoofing is 

depicted in Figure 4. The input consists of a stream of 

NMEA sentences, generated by at least two GPS receivers 

within a network. Alternatively, pre-recorded network 

trace files can serve as input. For each detection method, 

specific fields within the NMEA sentences that are 
relevant to the respective detection approach are identified. 

These fields are continuously monitored, and any state 

change activates the corresponding detection method(s) 

(Spravil et al., 2023). 
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Fig 4 Conceptual Overview of the GPS Spoofing MANA Framework and its Components. 

Source: Spravil, J., et al., (2023). Detecting maritime gps spoofing attacks based on nmea sentence integrity 

monitoring. Journal of Marine Science and Engineering, 11(5), 928. 

 
B. Impact of Extreme Environmental Conditions 

Extreme weather, geographical isolation, and harsh 

marine environments significantly exacerbate 

cybersecurity risks in the maritime industry. These factors 

introduce unique challenges to both the physical and 

digital security of maritime operations, making vessels and 

offshore platforms more vulnerable to cyber threats and 

complicating the detection and response process. 

 

 Impact of Extreme Weather on Cybersecurity 

Extreme weather conditions such as storms, high 

winds, and rough seas can physically damage onboard 

network infrastructure and communication equipment, 

leading to operational failures and increasing susceptibility 

to cyber-attacks. For instance, during severe weather 

events, critical communication systems like satellite links, 

which are essential for the ship’s navigation and 

coordination, can be disrupted (Wei et al., 2021). These 

disruptions create vulnerabilities, as attackers can exploit 

periods of limited connectivity or system degradation to 

launch cyberattacks. Furthermore, extreme weather often 

diverts the attention of the crew to safety operations, 

reducing their ability to focus on cybersecurity protocols, 

thereby increasing the risk of successful breaches (Jones et 

al., 2016). 

 

In particular, weather-related delays in software 

updates or security patches can leave systems exposed to 

known vulnerabilities. When a ship’s communication 

systems are compromised or degraded due to weather 

conditions, critical updates are delayed, giving 

cybercriminals a window of opportunity to exploit 
weaknesses in the system (Alqurashi et al., 2022). 

Additionally, natural events like solar storms can cause 

electromagnetic interference, affecting GPS signals, 

navigation systems, and even onboard cybersecurity 

defenses, leaving ships more vulnerable to spoofing and 

jamming attacks (Androjna & Perkovič, 2021). 

 

 Geographical Isolation and Remote Operations 

Maritime vessels often operate in remote areas, far 

from shore-based support or reliable internet access, which 

poses significant challenges for cybersecurity. The 

geographical isolation of ships and offshore platforms 

makes it difficult to detect, monitor, and respond to cyber 

threats in real-time. Unlike land-based industries, where 

cybersecurity personnel can quickly intervene, maritime 

operations rely heavily on automated systems and 

intermittent communication, which may not be sufficient 

to address sophisticated cyberattacks (Mraković & 

Vojinović 2019). 

 

Moreover, this isolation often leads to longer 

response times for cybersecurity incidents. When a 

vessel’s systems are compromised, the limited 

connectivity makes it harder to collaborate with shore-

based IT teams or cybersecurity experts, prolonging the 

vulnerability period (Katterbauer, 2022). For example, if a 

vessel in a geographically isolated location is targeted by 

a ransomware attack or suffers a network breach, the crew 

may not have the expertise or resources to mitigate the 

threat until they are within range of external support. 

 

 Harsh Marine Environments and Equipment 
Vulnerability 

The maritime environment is inherently harsh, with 

high humidity, saltwater exposure, and temperature 

extremes that can degrade hardware and networks over 
time. Saltwater corrosion is a particular concern, as it can 

weaken the physical components of network 

infrastructure, leading to equipment failures that expose 

systems to cyber threats (Yuan et al., 2017). Additionally, 
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the harsh environmental conditions require robust and 

resilient systems that can withstand wear and tear, but the 

frequent need for repairs or replacements can open the 

door to cyber vulnerabilities, especially if compromised 

equipment is replaced with insecure or outdated devices. 

 

The frequent maintenance required in these 

environments can lead to increased use of third-party 

services, which introduces further risk through potential 

supply chain attacks. For example, compromised hardware 

or software provided by external vendors may introduce 

malware into the ship’s network, further exacerbating the 

risks posed by the already harsh operating conditions 

(Nawaz et al., 2024). Harsh environments can also cause 

intermittent power outages, leading to unexpected system 

reboots or unsynchronized security measures, further 

complicating the ship’s defense against cyber threats 

(Okeke et al., 2024). 

 

C. Challenges in Maintaining Connectivity and Secure 
Communications. 

Maintaining connectivity and secure communications 

in maritime operations presents significant challenges due 

to the unique operational environment, which includes 

geographical isolation, extreme weather conditions, and 

the technical limitations of existing communication 

infrastructures. These factors complicate the ability of 

vessels and offshore platforms to maintain continuous, 

secure, and reliable communications, leaving them 

vulnerable to cyberattacks and operational disruptions. 

 

 

 

 Limited Communication Infrastructure 
One of the major challenges in maritime operations is 

the limited availability of reliable communication 

infrastructure. Ships often operate in remote areas of the 

ocean, far from terrestrial communication networks, 

relying heavily on satellite-based systems for connectivity 

(Wei et al., 2021). However, satellite communication has 

inherent limitations, such as high latency, limited 

bandwidth, and susceptibility to signal interference. These 

constraints not only slow down data transmission but also 

create gaps in coverage, making it difficult to maintain 

continuous, secure connections for critical systems like 

navigation, cargo management, and monitoring (Yuan et 

al., 2017). 

 

This lack of reliable, high-speed communication 

infrastructure can hinder the timely application of security 

patches and updates, leaving maritime networks 

vulnerable to known cyber threats. Moreover, the limited 

bandwidth available through satellite connections makes it 

challenging to implement advanced encryption and 

security protocols, as these often require significant 

processing power and data throughput (Mraković & 

Vojinović 2019). The resulting security gaps make ships 

and offshore installations prime targets for cyberattacks, as 

attackers can exploit these weak points to intercept or 

manipulate data. 

 

The illustrations in figure 5 show an overview of 

communication arrangement (vessel-to shore 

communication) intended to allow offshore vessels to 

access real time data and at the same time send and receive 

critical updates when in coastal environment. 

 

 
Fig 5 An Overview of Communication System in the Maritime Environment 

Source: Ibokette et al., (2024). Optimizing maritime communication networks with virtualization, containerization and IoT 

to address scalability and real – time data processing challenges in vessel – to –shore communication. 
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 Latency and Data Transmission Delays 
High latency in satellite communications poses a 

serious challenge to secure maritime communications. 

Due to the long distance between vessels and satellites, 

real-time data transmission is often delayed, impacting the 

ability to monitor and respond to cyber threats in a timely 

manner (Alqurashi et al., 2022). This delay also affects 

critical functions, such as navigation updates, system 

diagnostics, and communications with shore-based 

support teams. For instance, in the event of a cyberattack, 

the latency in detecting, reporting, and responding to 

security breaches can lead to prolonged exposure to 

threats, increasing the potential damage to operational 

systems. 

 

Latency also complicates the implementation of real-

time encryption and decryption processes, which are 

necessary to secure sensitive data in transit. Advanced 

encryption protocols, while crucial for preventing 

unauthorized access, require high processing speeds and 

low-latency communication to function effectively. In 

high-latency environments, such as those dependent on 

satellite communication, the encryption process can 

experience delays, leaving data transmissions exposed to 

interception or tampering during transit (Wei et al., 2021). 

 

When a packet is completed, the network device 

activates an interrupt to inform the system of the event. 

The real-time process (RT task) that handles this event 

must be scheduled, processed, and then respond, leading 

to processing delays after the packet reaches the real-time 

system control device as shown in figure 6. Two main 

sources of delay can be identified in this process. Interrupt 

latency occurs when the system is unable to immediately 

handle the interrupt due to other operations, including 

saving the processor's state and processing the interrupt 

itself. Dispatch latency happens after the interrupt is 

handled, when the RT task is ready to run but experiences 

delay due to context switching, scheduling, and other 

conflicts during the dispatch process (Queiroz et al., 2023). 

 

 
Fig 6 Processing Latency 

Source: Queiroz, R., et al., (2023): Container-Based Virtualization for Real-Time Industrial System – A Systematic Review. 

 

 Vulnerability to Signal Jamming and Interference 

Another significant challenge in maritime 

communications is the vulnerability to signal jamming and 

interference. Given the reliance on satellite and radio 

frequency (RF) communications, ships are susceptible to 

deliberate jamming attacks or environmental interference 

that can disrupt or block communication signals. Signal 

jamming can prevent the transmission of vital information, 

such as navigation coordinates or distress signals, 

compromising both safety and security (Androjna & 

Perkovič, 2021). Additionally, natural phenomena, such as 

solar flares or electromagnetic interference, can further 

degrade the quality of satellite communications, making 

secure, continuous connectivity difficult to maintain. 

 

These disruptions can be especially dangerous in 

critical moments, such as during navigation in congested 

waters or in response to emergency situations. For 

example, an attacker could jam the GPS signals used by a 

vessel, causing it to veer off course without the crew 

realizing it. In such cases, the inability to communicate 
with shore-based authorities or other vessels due to 

jamming or interference can result in severe operational 

risks (Bari et al., 2016). 

 

 Cybersecurity Threats to Communication Systems 

The maritime industry is increasingly targeted by 

cyberattacks aimed at compromising communication 

systems. Hackers may attempt to intercept, alter, or block 

data transmissions to gain control of a ship’s systems or 

steal sensitive information. Without strong encryption and 

authentication measures in place, cybercriminals can 

exploit communication vulnerabilities to conduct man-in-

the-middle attacks, where they insert themselves into the 

communication stream between ships and shore-based 

control centres (Mraković & Vojinović 2019). This can 

lead to unauthorized access to critical systems, such as 

navigation, engine control, or cargo management. 

 

The challenge is further compounded by the use of 

legacy communication systems in many maritime 

operations. These systems may not have been designed 

with modern cybersecurity needs in mind and often lack 

the necessary protections against cyber threats. As 

maritime organizations transition to more digital and 

automated systems, the need to upgrade legacy 
communication infrastructures become paramount to 

ensure that communications remain secure and resilient in 

the face of evolving cyber threats (Nawaz et al., 2024). 
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III. AI-BASED INTRUSION DETECTION 

SYSTEMS (IDS) 

 
A. Overview of Intrusion Detection Systems (IDS) 

Intrusion Detection Systems (IDS) are a critical 

component of cybersecurity infrastructure, designed to 

monitor network traffic and detect suspicious activities or 

policy violations that may indicate a security breach. An 

IDS acts as an early warning system by analyzing data for 

signs of malicious activities, such as unauthorized access, 

abnormal patterns, or system vulnerabilities, and alerting 

security administrators to take preventive actions (Patel et 

al., 2013). 

 

IDS are generally classified into two broad 

categories: Network-based IDS (NIDS), which monitor 

network traffic, and Host-based IDS (HIDS), which 

monitor activity on individual devices or systems. Both 

play crucial roles in detecting cyber threats across different 

layers of an organization’s IT environment, providing 

defense against a wide range of potential attacks, including 

malware, denial-of-service (DoS), and insider threats 

(Asharf et al., 2020). 

 
 Network-Based Intrusion Detection Systems (NIDS) 

NIDS monitor the entire network for malicious 

activities by analyzing packets that travel through the 

network. These systems are usually placed at strategic 

points, such as network gateways or critical junctions 

within an organization's infrastructure, to inspect incoming 

and outgoing traffic in real-time. By using predefined rules 

or behavioral analysis, NIDS can detect unusual patterns 

that may indicate an attack, such as unauthorized data 

exfiltration, DDoS attacks, or port scanning (Deshpande et 

al., 2018). 

One of the key advantages of NIDS is that it allows 

for the monitoring of multiple devices simultaneously, 

making it scalable for large organizations, including those 

in the maritime industry where communication networks 

extend across fleets and offshore installations. However, a 

limitation of NIDS is that encrypted traffic is challenging 

to analyze, which can hinder its ability to detect threats 

within secure communications (Patel et al., 2013). 

 

As shown in Figure 7 this model is divided into two 

components: a sensor, which gathers data from an 

information source, and a detector, which handles the 

analysis. The system is comprised of multiple sensors and 

detectors. In practical applications, it collects data from 

various sources, which are then processed by a central 

detector. The detector is designed to identify known 

intrusions, learn new intrusion patterns, and respond to 

events as they occur, triggering an alarm when necessary 

(Sodiya et al., 2014). 

 

 
Fig 7 Artificial Neural Network Based IDS Model. 

Source: Sodiya et al., (2014). Neural network-based intrusion detection systems. 

 

 Host-Based Intrusion Detection Systems (HIDS) 

HIDS focus on monitoring individual systems or 

hosts for suspicious activities by analyzing system logs, 

file integrity, and application behavior. These systems are 

especially useful in identifying threats that have bypassed 

network defenses, such as malware infections or 

unauthorized file modifications (Scarfone & Mell, 2010). 

In the maritime sector, HIDS can be deployed on 

shipboard systems, ensuring that critical systems like 

navigation and engine control are continuously monitored 

for unauthorized access. 

 

HIDS are highly effective in detecting insider threats 

and sophisticated malware attacks that target specific 

hosts. However, they require substantial resources for 

deployment and maintenance, as each host must be 

equipped with its own IDS system, which can lead to 

challenges in scaling for large or distributed operations 

(Deshpande et al., 2018). 

 

A Host-based Intrusion Detection and Prevention 

System (HIDPS) monitors various types of host events and 

activities to identify malicious code and intrusion attempts 

on host systems, including desktops, mail servers, DNS 

servers, web servers, and database servers. When HIDPS 
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detects malicious code or abnormal behaviors, such as 

buffer overflow or unauthorized file system access, it 

prevents their execution. HIDPS gathers information from 

host systems, including file system usage, network events, 

and system calls, to detect intrusions (Letou et al., 2013). 

The proposed HIDPS model is illustrated in Figure 8, and 

its components include Data Pre-processing, Feature 

Extraction, Feature Selection, Misuse Detection Engine, 

Anomaly Detection Engine, Knowledge-based Database, 

Behavior-based Database, Countermeasure, Launch 

Action, and System Administrator. 

 

 Data Pre-processing: Data is filtered and segmented 

for analysis. 

 Feature Extraction: Network packets are decomposed 

to extract relevant features. 

 Feature Selection: Feature vectors are selected to be 

used as inputs for machine learning algorithms. 

 

 
Fig 8 Proposed Host-based Intrusion Detection and Prevention System Model 

Source: Letou et al. (2013). Host-based intrusion detection and prevention system (HIDPS). International Journal of 
Computer Applications, 69(26), 28-33. 

 

 Misuse Detection Engine: This engine processes input 

data, searching for known attack signatures, events, 

and alerts based on past attacks. 

 Anomaly Detection Engine: This engine processes 
input data by comparing it against a user-defined 

profile of normal behavior, identifying any deviations 

or abnormal system activities. 

 Knowledge-based Database: Stores records of 

previously known attacks, events, and alerts, which the 

Misuse Detection Engine utilizes. 

 Behavior-based Database: Stores profiles of normal 
behavior, events, and alerts, required by the Anomaly 

Detection Engine. 
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 Countermeasure: Reacts to detected attacks by 

blocking and preventing them from causing further 

damage. 

 Launch Action: Displays warnings, generates reports 

on system events, and tracks the activities of potential 

attackers or intruders. 

 System Administrator: The administrator takes 

appropriate action based on the warnings displayed, 

reports generated, and intruder activity tracking. 

 

B. Signature-Based vs. Anomaly-Based Detection 
Intrusion detection systems employ different 

methodologies for identifying potential threats, the most 

common being signature-based detection and anomaly-

based detection. 

 

 Signature-Based Detection:  

This approach relies on a predefined database of 

known attack patterns or signatures. When an incoming 

traffic pattern matches one of these signatures, the IDS 

generates an alert. While signature-based detection is 

highly effective in identifying known threats, it struggles 

to detect new or unknown attacks (Patel et al., 2013). In 

dynamic environments like maritime networks, where new 

threats can emerge rapidly, this approach has limitations in 

providing comprehensive security. 

 

 Anomaly-Based Detection:  

Anomaly detection focuses on identifying deviations 

from normal network behavior. This is particularly useful 

in environments with unpredictable traffic patterns, such 

as maritime networks, where ships and ports may have 

varying communication loads depending on operational 

conditions (Ijiga et al 2024). Anomaly-based systems can 

detect novel attacks by flagging unusual behavior, though 

they can also generate a higher rate of false positives, 

which requires careful tuning to avoid alert fatigue. 

 

C. Role of IDS in the Maritime Industry 
In the maritime sector, where operations depend on 

interconnected networks, intrusion detection systems are 

essential for defending against cyber threats. Given the 

increasing reliance on automated and digital technologies 

for navigation, cargo handling, and communications, 

maritime vessels and ports face growing exposure to 

cyber-attacks (Mraković & Vojinović 2019). IDS can 

provide a first line of defense by continuously monitoring 

networks for threats, thereby reducing the risk of cyber 

incidents that could jeopardize the safety and security of 

maritime operations. 

 

Furthermore, the maritime industry's geographically 

dispersed nature, with vessels and offshore platforms 

operating in isolated areas, increases the importance of 

IDS as a mechanism to ensure secure communication and 

timely detection of threats. IDS solutions tailored to the 

maritime environment, such as those equipped with 

anomaly-based detection, can enhance the sector’s 
resilience to cyber threats, especially in scenarios where 

connectivity is intermittent and satellite communications 

are used (Alqurashi et al., 2022). 

 

Despite their benefits, deploying IDS in maritime 

operations comes with challenges. These include the need 

to manage high volumes of network traffic, ensure 

compatibility with legacy systems, and cope with high-

latency satellite communications (Wei et al., 2021). 

Additionally, IDS must be capable of operating in harsh 

environmental conditions where system reliability can be 

affected by factors such as extreme weather, geographical 

isolation, and limited bandwidth (Yuan et al., 2017). 

 

D. Key Metrics for Evaluating IDS Performance 
The effectiveness of Intrusion Detection Systems 

(IDS) can be assessed through various performance 

metrics, which provide insights into their operational 

efficiency, detection capabilities, and overall security 

contributions. Understanding these metrics is essential for 

evaluating and comparing different IDS implementations, 

particularly as cyber threats evolve. 

 

Key metrics for evaluating IDS performance include 

detection rate, false positive rate, false negative rate, 

precision and recall. 

 

 Detection Rate (True Positive Rate) 
The detection rate, also known as the true positive 

rate, measures the proportion of actual attacks that the IDS 

successfully identifies. It is calculated as follows: 

 

 
 

A high detection rate indicates that the IDS is 

effective in identifying genuine threats. This metric is 

crucial for organizations, especially in critical sectors like 

maritime operations, where undetected threats can lead to 

severe consequences (Almaiah et al, 2022). 

 

 False Positive Rate 
The false positive rate measures the proportion of 

benign activities incorrectly classified as attacks. It is 

calculated as: 

 

 
 

A high false positive rate can lead to alert fatigue 

among security personnel, making it challenging to focus 

on genuine threats (Wei et al., 2021). Therefore, an 

effective IDS should aim to minimize false positives while 

maintaining a high detection rate. 

 

 False Negative Rate 
The false negative rate measures the proportion of 

actual attacks that the IDS fails to detect. It is calculated 

as: 
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A high false negative rate indicates that the IDS is 

missing a significant number of threats, which can have 

dire implications for an organization's security posture 

(Saranya et al., 2020). It is essential for organizations to 

balance the trade-off between false negatives and false 

positives to ensure comprehensive threat detection. 

 

 Precision 
Precision, also known as positive predictive value, 

measures the accuracy of the IDS in identifying true 

threats among all the alerts generated. It is calculated as 

follows: 

 

 
 

High precision indicates that the IDS generates fewer 

false alerts, enhancing the credibility of the alerts that are 

issued (Georgescu, 2020, Hodge & Austin, 2004). This is 

particularly important in operational environments, such 

as maritime systems, where timely and accurate responses 

to alerts are critical. 

 

 Recall (Sensitivity) 
Recall, or sensitivity, measures the proportion of 

actual attacks that the IDS successfully identifies. It is 

synonymous with the detection rate, but it emphasizes the 

importance of recognizing true attacks within the overall 

context of the IDS's performance. Recall is calculated as: 

 

 
 

 

A high recall value indicates that the IDS is effective 

at capturing most attacks, thus preventing potential 

breaches and damages (Almaiah et al, 2022, Georgescu, T. 

M. 2020). 

 

E. AI Techniques in Intrusion Detection 
The increasing sophistication and frequency of 

cyberattacks necessitate the development of advanced 

Intrusion Detection Systems (IDS) capable of identifying 

and mitigating threats in real-time. Artificial Intelligence 

(AI) techniques have emerged as vital tools in enhancing 

the effectiveness of IDS by enabling the automation of 

threat detection processes, improving accuracy, and 

reducing false positive rates. 

 

An Intrusion Detection System (IDS) is a security 

mechanism that continuously monitors the activities of a 

computer system or network to detect potential security 

breaches and notify the user. Figure 9 presents the 

components of a typical IDS. The IDS functions in three 

phases: data collection, detection, and response. During 

the data collection phase, events are generated from log 

data, which are derived from the target system. These data 

sources can include network traffic, operating system logs, 

and device logs. 

 

In the detection phase, the analysis engine employs 

detection algorithms, using scripts to match text patterns 

associated with specific intrusions. This phase aims to 

distinguish between normal and abnormal behaviors 

within the target system. The final phase, the response 

stage, processes the information about events classified as 

normal or abnormal and determines the appropriate action, 

such as alerting the system administrator, automatically 

reconfiguring the system to block the intruder, or offering 

response mechanisms for manual intervention. 

 

 
Fig 9 The Components of a General IDS. 

Source: Almaiah et al., (2022). Performance investigation of principal component analysis for intrusion detection system 

using different support vector machine kernels. 
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This section discusses three AI techniques employed 

in intrusion detection, specifically machine learning, deep 

learning, and natural language processing. 

 

 Machine Learning Approaches 

Machine learning (ML) is a subset of AI that involves 

training algorithms to recognize patterns in data. In the 

context of intrusion detection, ML algorithms can learn 

from historical data to identify normal behavior and detect 

anomalies that may indicate malicious activities. Common 

ML techniques used in IDS include supervised learning, 

unsupervised learning, and semi-supervised learning. 

 

 Supervised Learning:  

In supervised learning, models are trained on labeled 

datasets, where each data point is associated with a known 

outcome (i.e., normal or malicious). Techniques such as 

Support Vector Machines (SVM), Decision Trees, and 

Random Forests are frequently used. These models excel 

in detecting known threats but may struggle with novel 

attacks not represented in the training data (Saranya et al., 

2020). 

 

 Unsupervised Learning:  

Unsupervised learning approaches do not rely on 

labeled datasets, making them particularly useful for 

identifying previously unknown attacks. Clustering 

algorithms, such as K-Means and DBSCAN, can group 

similar data points together, helping to reveal unusual 

patterns or outliers that may indicate an intrusion (Adu-

Twum et al., 2024). This approach is especially beneficial 

in dynamic environments, such as maritime networks, 

where new types of attacks frequently emerge. 

 

 Semi-Supervised Learning:  
Combining aspects of supervised and unsupervised 

learning, semi-supervised learning uses a small amount of 

labeled data along with a larger set of unlabeled data. This 

technique can significantly enhance detection performance 

when labeled examples are scarce, which is often the case 

in cybersecurity applications (Asharf et al., 2020). 

 

Most Intrusion Detection Systems (IDS) follow a 

standard structure that consists of: (1) a data collection 

module that gathers data potentially containing evidence 

of an attack, (2) an analysis module that identifies attacks 

by processing the data, and (3) a reporting mechanism for 

alerting about the attack. In the data collection module, 

input data from various parts of IoT systems are collected 

and analyzed to establish patterns of normal behavior, 

enabling the detection of malicious activities at an early 

stage. The analysis module can utilize different 

techniques, but machine learning (ML) and deep learning 

(DL) approaches are particularly effective and widely 

used. These methods are capable of learning both normal 

and abnormal behaviors based on interactions between IoT 

devices and systems. Moreover, ML/DL techniques can 

anticipate new types of attacks, even those that differ from 

previously encountered ones, by learning from existing 

legitimate samples to predict future, unknown threats. 

Figure 10 illustrates the components of a typical IDS 

utilizing ML/DL methods. 

 

 
Fig10 Role of Machine Learning/Deep Learning (ML/DL) Based IDS for IoT system. 

Source: Asharf, J., et al (2020). A review of intrusion detection systems using machine and deep learning in internet of 

things: Challenges, solutions and future directions. 

 

 Deep Learning Techniques 
Deep learning, a more advanced subset of machine 

learning, utilizes neural networks with multiple layers to 

model complex patterns in data. Deep learning techniques 

have shown promise in improving intrusion detection 

capabilities due to their ability to handle vast amounts of 

data and automatically extract relevant features (Almaiah 

et al, 2022). 

 

 Convolutional Neural Networks (CNNs):  

CNNs are particularly effective in analyzing 

structured data, such as network traffic and logs. They can 

learn spatial hierarchies of features, making them suitable 

for detecting sophisticated attack patterns that might be 

missed by traditional methods (Oyebanji et al., 2024). 

 

 Recurrent Neural Networks (RNNs):  

RNNs, including Long Short-Term Memory (LSTM) 

networks, excel at processing sequential data. In the 
context of IDS, they can analyze time-series data from 

network traffic to identify trends and patterns indicative of 

attacks, making them particularly effective for detecting 

ongoing attacks (Pitropakis et al., 2020). 
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 Natural Language Processing (NLP) 
Natural Language Processing (NLP) techniques are 

increasingly being applied to intrusion detection systems, 

particularly for analyzing logs and textual data generated 

by network devices. NLP can help convert unstructured 

log data into structured information, enabling more 

effective analysis (Georgescu, 2020). 

 

 Text Classification:  

Using techniques like bag-of-words and word 

embeddings, NLP models can classify logs based on their 

content, identifying abnormal entries that may signify 

security incidents (Chen et al., 2021). By automating the 

analysis of large volumes of log data, organizations can 

enhance their ability to detect and respond to incidents in 

real time. 

 

 Sentiment Analysis:  

Although primarily used in social media and 

customer feedback analysis, sentiment analysis techniques 

can also be adapted for cybersecurity applications. By 

analyzing the tone and context of communication within a 

network, systems can identify potential insider threats or 

compromised accounts (Chen et al., 2021). 

 

F. Applications of AI-Based IDS in Maritime 
As maritime operations increasingly adopt digital 

technologies, the integration of Intrusion Detection 

Systems (IDS) has become crucial for safeguarding 

maritime networks against cyber threats. This section 

examines current implementations of IDS in the maritime 

industry and presents relevant case studies that illustrate 

their effectiveness in real-world scenarios. 

 

 Implementations of IDS in Maritime Operations 

The maritime industry is adopting a variety of IDS 

solutions tailored to meet the unique challenges posed by 

maritime environments. Key implementations include: 

 

 Network-Based Intrusion Detection Systems (NIDS):  

NIDS monitor network traffic for suspicious 

activities and are widely used in maritime operations. For 

example, the Royal Navy has adopted NIDS to secure 

communications between ships and shore-based facilities. 

By analyzing network packets in real time, the system can 

detect unauthorized access attempts and potential malware 

(Ali et al., 2020). 

 

 Host-Based Intrusion Detection Systems (HIDS):  

HIDS operate on individual hosts or devices, 

monitoring system calls, file modifications, and 

application logs. The shipping company Maersk 

implemented HIDS across its fleet to enhance endpoint 

security, ensuring that each vessel's onboard systems are 

protected from internal and external threats (Mishra et al., 

2024). 

 

 Anomaly Detection Systems:  

Many maritime organizations are utilizing anomaly 

detection techniques that uses machine learning to identify 

deviations from normal operational patterns. For instance, 

a case study involving the Port of Rotterdam demonstrated 

the application of an anomaly detection model to monitor 

shipping data and flag unusual behavior that could indicate 

cyber intrusions (Jović et al., 2019). 

 

G. Case Studies of IDS in Maritime Cybersecurity 

 

 Case Study: Maersk's Cybersecurity Strategy 
Following the NotPetya ransomware attack in 2017, 

Maersk recognized the critical need to enhance its 

cybersecurity posture. The company implemented a 

comprehensive IDS solution that combined NIDS and 

HIDS across its global operations. This multi-layered 

approach enabled real-time threat detection and improved 

response times to security incidents. Maersk's investment 

in advanced IDS technologies not only helped in 

mitigating the impact of future attacks but also ensured 

compliance with international cybersecurity regulations, 

such as the International Maritime Organization (IMO) 

guidelines (Mishra et al., 2024). 

 

 Case Study: The Port of Rotterdam 
The Port of Rotterdam, one of the busiest ports in the 

world, has adopted advanced cybersecurity measures, 

including IDS, to protect its critical infrastructure. The port 

implemented a hybrid IDS that utilizes both signature-

based and anomaly-based detection methods. By 

continuously analyzing traffic patterns and user behavior, 

the system can identify potential cyber threats before they 

cause significant disruptions. This proactive approach has 

proven effective in safeguarding the port's operations 

against emerging cyber threats (Jović et al., 2019). 

 

 Case Study: Royal Caribbean International 
Royal Caribbean International has integrated IDS 

within its operational technology (OT) environment to 

secure its fleet against cyber threats. By employing both 

HIDS and NIDS, the company monitors communications 

and interactions between shipboard systems and external 

networks. This implementation has been crucial in 

identifying unauthorized access attempts and ensuring the 

integrity of critical onboard systems. The case highlights 

the importance of IDS in the cruise industry, where 

maintaining secure and reliable operations is essential for 

passenger safety and business continuity (Ali et al., 2020). 

 

H. How AI-Driven Intrusion Detection Systems Can Adapt 
to Extreme Environmental Conditions 

Artificial Intelligence (AI) has emerged as a powerful 

tool for enhancing Intrusion Detection Systems (IDS), 

particularly in environments subject to extreme conditions, 

such as maritime operations. The application of AI in IDS 

enables systems to adapt dynamically to various 

challenges, improving their effectiveness in detecting and 

mitigating cyber threats. This section provides analyses on 

how AI-driven IDS can adapt to extreme environmental 

conditions, focusing on their capabilities to analyze data, 

learn from patterns, and respond to specific threats. 

 

 Real-Time Data Processing and Anomaly Detection 
AI-driven IDS can process vast amounts of data in 

real-time, allowing them to identify unusual patterns and 

behaviors that may signify potential threats. In maritime 

environments, where operational conditions can be 

unpredictable due to factors such as weather and 
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geographical isolation, the ability to quickly analyze 

incoming data streams is critical. Machine learning 

algorithms can continuously learn from new data, 

improving their accuracy over time (Almaiah et al, 2022). 

For instance, a study by Kim et al. (2021) demonstrated 

that an AI-based IDS could successfully identify 

anomalies in network traffic during extreme weather 

conditions, allowing for timely interventions and reduced 

risk of cyber incidents. 

 

 Adaptive Learning and Continuous Improvement 
One of the significant advantages of AI-driven IDS is 

their ability to learn and adapt to new threats. Through 

techniques such as reinforcement learning, these systems 

can modify their detection strategies based on the evolving 

nature of cyber threats. In maritime settings, where 

environmental conditions can drastically impact network 

performance and system behavior, AI-driven IDS can 

adjust their algorithms to accommodate these variations. 

For example, an AI-based system may recognize that 

certain communication patterns are more prevalent during 

storms and adjust its detection criteria accordingly, thus 

minimizing false positives and ensuring relevant alerts 

(Elsayed et al., 2022). 

 

 Contextual Awareness and Environmental Adaptation 
AI-driven IDS can be designed to incorporate 

contextual awareness, allowing them to consider 

environmental factors when assessing network security. 

This capability is particularly important in maritime 

environments, where factors like geographical location, 

vessel type, and operational status can influence 

vulnerability to cyber threats. By utilizing contextual data, 

AI systems can enhance their detection capabilities and 

provide tailored security responses (Ghaleb et al., 2022). 

For instance, a case study by Ali et al. (2020) illustrated 

that an AI-driven IDS employed in a maritime operation 

could adjust its alert thresholds based on the vessel's 

operational state and environmental conditions, improving 

the accuracy and relevance of security alerts. 

 

 Resilience to Environmental Disruptions 

Extreme environmental conditions, such as severe 

weather events or physical obstructions, can disrupt 

communication and data transmission in maritime settings. 

AI-driven IDS can enhance resilience by employing 

decentralized architectures and edge computing strategies. 

These approaches enable data processing and analysis to 

occur closer to the source of data, minimizing the impact 

of connectivity issues (Ashraf et al., 2020). For example, a 

maritime operation utilizing edge computing with AI-

driven IDS demonstrated improved performance in 

detecting anomalies during adverse weather conditions, 

ensuring continuous monitoring and rapid threat response. 

 

IV. NETWORK AUTOMATION IN 

MARITIME CYBERSECURITY 

 
A. Role of Network Automation 

The maritime industry is increasingly embracing 

automation to enhance the efficiency and security of its 

networks. As digital technologies and interconnected 

systems become more prevalent, automation plays a 

critical role in managing maritime operations and 

safeguarding sensitive data. This section reveals the 

importance of automation in managing maritime networks 

and securing data, highlighting the benefits, challenges, 

and recent advancements in this field. 

 

 Enhancing Operational Efficiency 

Automation in maritime networks enables 

organizations to streamline operations and optimize 

resource allocation. Automated systems can monitor 

network performance, detect anomalies, and facilitate 

rapid decision-making. For instance, vessel traffic services 

(VTS) have integrated automated systems to track and 

manage ship movements, ensuring safe navigation and 

efficient port operations (Wei et al., 2021). Such 

automation not only reduces human error but also 

enhances the overall safety and efficiency of maritime 

activities. 

 

 Automated Intrusion Detection and Response 
Automated Intrusion Detection Systems (IDS) are 

essential for identifying and mitigating cyber threats in 

maritime networks. By employing machine learning 

algorithms, these systems can analyze vast amounts of 

network traffic in real time to detect malicious activities. 

For example, recent research by Sowmya & Anita, (2023) 

demonstrated an automated IDS specifically designed for 

maritime operations, capable of identifying unauthorized 

access attempts and quickly responding to potential 

threats. The automation of threat detection and response 

mechanisms reduces the reliance on human intervention, 

allowing security teams to focus on more strategic tasks. 

 

 Data Security and Compliance 
With the growing reliance on digital technologies, 

securing sensitive data in maritime operations has become 

paramount. Automation can help enforce security policies 

and ensure compliance with regulatory standards. 

Automated data encryption, access controls, and 

monitoring systems can protect critical information from 

unauthorized access and data breaches. A study by Jones 

et al (2016) emphasized the effectiveness of automated 

data security measures in maritime environments, 

highlighting how these systems can enforce compliance 

with international regulations, such as the International 

Maritime Organization’s (IMO) guidelines. 

 

 Integration of Internet of Things (IoT) Technologies 

The integration of IoT devices in maritime operations 

presents both opportunities and challenges for data 

management and security. Automated systems can 

facilitate the secure management of data generated by IoT 

devices, ensuring that information is collected, 

transmitted, and stored securely. For instance, IoT sensors 

deployed on vessels can monitor environmental 

conditions, equipment status, and operational metrics. An 

automated data management system can analyze this data 

in real time, providing insights for optimizing operations 
and enhancing safety (Chi et al., 2020). 

 

Cyber-physical systems in the maritime sector 

involve the integration of information technology (IT) and 

operational technology (OT) systems, along with human 
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factor considerations. This integration, illustrated in Figure 

11a, defines cyber-physical systems and encompasses 

most onboard systems of maritime vessels. Figure 11b 

presents a simplified diagram of the communication 

pathways between shore-based and vessel-based 

stakeholders and IT/OT platforms, highlighting the 

interaction between IT and OT systems. Maritime vessels, 

managed by human operators, contain an interface 

between IT and OT systems that links processes, systems, 

components, and both technical and operational 

performance. A naval vessel can be seen as a system of 

systems, equipped with IT and OT devices. The crew 

operates these systems and is responsible for ensuring the 

vessel's overall operational and performance integrity. 

Similarly, shipping companies maintain an IT interface 

that supports vessels technically and operationally, with 

human operators using IT systems to achieve performance 

and financial objectives that support maritime operations. 

Ports interact with vessels on both a shore-to-ship and 

ship-to-shore level, handling the loading and unloading of 

maritime goods. This process relies on a combination of IT 

and OT platforms, such as cargo management systems, 

cranes, and utilities. These platforms support maritime 

assets technically and operationally, with human operators 

managing and configuring the cyber-physical systems. 

Maintenance of OT devices and systems is performed 

either physically or remotely (Progoulakis, et al., 2021). 

 

 
Fig 11a IT, OT, and human element interface in cyber physical systems. 

Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and 

Engineering, 9(12), 1384. 

 

 
Fig 11b Communication paths of shore-based and vessel-based stakeholders and IT/OT platforms. 

Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and 
Engineering, 9(12), 1384. 

 

B. Autonomous Decision-Making for Responding to 
Cyber Threats 

As the maritime industry becomes increasingly 

reliant on digital technologies, the potential for cyber 

threats has escalated significantly. Autonomous decision-

making systems are emerging as critical tools for 

responding to these threats, enabling organizations to react 
swiftly and effectively to cybersecurity incidents. This 

section exposes the concept of autonomous decision-

making in the context of cyber threat response, 

highlighting its importance, methodologies, and 

challenges. 
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 The Need for Autonomous Decision-Making 
Cyber threats in maritime environments can arise 

from various sources, including malware, phishing, and 

Distributed Denial of Service (DDoS) attacks. These 

threats can disrupt operations, compromise sensitive data, 

and endanger safety (Maddireddy & Maddireddy, 2022). 

Traditional response mechanisms often rely on human 

intervention, which can introduce delays and increase the 

likelihood of errors in high-pressure situations. 

Autonomous decision-making systems can mitigate these 

issues by providing rapid, data-driven responses to 

detected threats, thus enhancing the resilience of maritime 

operations (Tinga et al., 2017). 

 

 Methodologies for Autonomous Decision-Making 

 

 Machine Learning and Artificial Intelligence 
Machine learning (ML) and artificial intelligence 

(AI) techniques are at the forefront of autonomous 

decision-making systems. These technologies enable the 

analysis of vast amounts of data to identify patterns and 

anomalies indicative of cyber threats. For example, an AI-

driven system can continuously monitor network traffic, 

learning from previous attacks to improve its detection 

capabilities and automate responses (Almaiah et al, 2022). 

Research by Tinga et al. (2017) demonstrated that an ML-

based autonomous system could effectively classify cyber 

threats in real-time, facilitating immediate 

countermeasures without human intervention. 

 

 Rule-Based Systems 

In addition to ML and AI, rule-based systems are 

commonly employed in autonomous decision-making. 

These systems use predefined rules to assess potential 

threats and determine appropriate responses. For instance, 

a rule-based IDS might automatically isolate a 

compromised device from the network to prevent further 

spread of an attack (Wei et al., 2021). While less adaptable 

than AI-driven systems, rule-based approaches can be 

effective in environments where threat scenarios are well-

understood. 

 

 Autonomous Incident Response Strategies 
Autonomous decision-making can facilitate several 

incident response strategies: 

 

 Automated Threat Containment:  

Upon detection of a threat, an autonomous system can 

automatically implement containment measures, such as 

blocking malicious IP addresses or quarantining affected 

systems. This immediate response helps prevent the 

escalation of incidents and minimizes damage (Uzoma et 

al., 2023). 

 

 Dynamic Risk Assessment:  
Autonomous systems can perform real-time risk 

assessments based on the current threat landscape and 

organizational context. This capability enables them to 

prioritize responses and allocate resources more 

effectively (Ray et al., 2013). 

 

The API STD 780 SRA methodology assesses and 

allows for the management of security risks through a risk-

based, performance-oriented management process aimed 

at the protection and security of assets, people, and the 

environment (Progoulakis, et al., 2021). The SRA is a five-

step process involving characterization, threat assessment, 

vulnerability assessment, risk evaluation and risk 

treatment as shown in Figure 12. 

 

 
Fig 12 API SRA Method of Security Risk Management. 

Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and 
Engineering, 9(12), 1384. 
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 Incident Recovery and Forensics:  
After a cyber incident, autonomous systems can assist 

in recovery efforts by restoring affected systems and 

analyzing logs for forensic purposes. This process is 

essential for understanding the attack and preventing 

future incidents (Maddireddy & Maddireddy, 2022). 

 

 Challenges in Autonomous Decision-Making 

While the benefits of autonomous decision-making 

for responding to cyber threats are evident, several 

challenges must be addressed: 

 

 Trust and Transparency:  
Organizations must develop trust in autonomous 

systems, which can be difficult when the decision-making 

process is opaque. Ensuring that stakeholders understand 

how decisions are made is critical for fostering confidence 

in these systems (Ibokette et al., 2024). 

 

 False Positives and Negatives:  

Autonomous systems are not infallible and can 

generate false positives or negatives, leading to 

unnecessary disruptions or missed threats. Continuous 

training and refinement of algorithms are essential to 

minimize these occurrences (Almaiah et al, 2022). 

 

 Ethical Considerations:  

The use of autonomous systems in cybersecurity 

raises ethical questions regarding accountability and 

responsibility for decisions made by machines. 

Establishing clear guidelines for accountability is crucial 

as these technologies become more prevalent (Tinga et al., 

2017). 

 

C. Technologies Enabling Network Automation 

Network automation has become a cornerstone of 

modern maritime operations, driven by the need for 

increased efficiency, enhanced security, and streamlined 

management of complex systems. Various technologies 

play a pivotal role in enabling network automation, 

allowing organizations to automate routine tasks, optimize 

network performance, and respond to cybersecurity threats 

in real time. This section discusses the key technologies 

that facilitate network automation in the maritime industry. 

 

 Software-Defined Networking (SDN) 

Software-Defined Networking (SDN) is a 

revolutionary approach that decouples the network control 

plane from the data plane, allowing for centralized 

management and dynamic configuration of network 

resources. SDN enables maritime organizations to 

automate network provisioning, monitoring, and 

management, significantly improving flexibility and 

scalability (Cardona et al., 2020). For example, in 

maritime contexts, SDN can facilitate the dynamic 

allocation of bandwidth to different vessels based on real-

time demands, ensuring optimal utilization of network 

resources (Simion et al., 2024). 
 

 Network Functions Virtualization (NFV) 
Network Functions Virtualization (NFV) 

complements SDN by virtualizing network functions that 

traditionally run on dedicated hardware. By deploying 

network functions as software applications on standard 

hardware, NFV allows maritime organizations to reduce 

costs and enhance operational agility (Cardona et al., 

2020). NFV enables the automated deployment of services 

such as firewalls, intrusion detection systems, and load 

balancers, making it easier to adapt to changing 

operational requirements and improve overall network 

performance. 

 

 Artificial Intelligence and Machine Learning 
Artificial Intelligence (AI) and Machine Learning 

(ML) technologies are integral to automating network 

management and security. AI algorithms can analyze 

network traffic patterns to detect anomalies, identify 

potential threats, and optimize performance (Ibokette et 

al., 2024). For instance, an AI-driven system can automate 

incident response by dynamically adjusting security 

policies based on real-time threat assessments 

(Katterbauer, 2022). Additionally, AI can enhance 

predictive analytics, allowing organizations to foresee 

network issues and proactively address them before they 

escalate into critical incidents. 

 

 Internet of Things (IoT) 
The Internet of Things (IoT) plays a crucial role in 

enabling network automation by connecting a myriad of 

devices and sensors to maritime networks. IoT devices 

generate vast amounts of data, which can be used to 

automate various processes, from monitoring equipment 

status to tracking environmental conditions. For example, 

IoT sensors on vessels can provide real-time data on fuel 

consumption, enabling automated adjustments to optimize 

fuel efficiency (Chi et al., 2020). Furthermore, the 

integration of IoT with network automation allows for 

more responsive and adaptive networks, enhancing 

situational awareness and operational efficiency. 

 

 Cloud Computing 

Cloud computing provides a flexible and scalable 

infrastructure for deploying automated network services. 

By using cloud resources, maritime organizations can 

automate the deployment and management of applications, 

data storage, and analytics tools without the need for 

extensive on-premises hardware (Ahmad et al., 2023). 

Cloud-based automation solutions can streamline 

processes such as software updates, data backups, and 

security monitoring, allowing organizations to focus on 

their core operations while maintaining a secure and 

efficient network environment. 

 
D. Resilience During Extreme Environmental Conditions 

Ensuring reliable connectivity and optimal system 

performance in harsh maritime environments is critical for 

the safety and efficiency of maritime operations. The 

unique challenges posed by extreme weather conditions, 

geographical isolation, and the inherent complexities of 

maritime systems necessitate the integration of automation 

technologies. This section reveals how automation can 
enhance connectivity and system performance in these 

demanding environments. 
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 Challenges of Harsh Maritime Environments 
Maritime operations face numerous challenges, 

including severe weather, high waves, and extreme 

temperatures, which can adversely affect connectivity and 

system performance. For instance, strong winds and heavy 

rainfall can disrupt satellite communications and degrade 

signal quality, leading to potential data loss or latency 

(Wei et al., 2021). Additionally, the corrosive nature of 

marine environments can impact the physical integrity of 

communication systems, further complicating the 

maintenance of reliable connectivity (Chi et al., 2020). 

 

 Automation for Network Resilience 
Automation plays a vital role in enhancing network 

resilience in harsh maritime conditions. Automated 

network management systems can continuously monitor 

network performance and adaptively allocate resources to 

ensure stable connectivity. For example, intelligent traffic 

management systems can dynamically adjust bandwidth 

allocation based on real-time demands, ensuring that 

critical communications remain intact even during adverse 

conditions (Sowmya & Anita 2023). Furthermore, 

automated failover mechanisms can reroute data traffic 

through alternative pathways if primary connections are 

compromised, thereby minimizing disruptions (Ghaleb et 

al., 2022). 

 

 Predictive Maintenance and Monitoring 

Predictive maintenance, enabled by automation and 

IoT technologies, is crucial for maintaining connectivity 

and system performance in harsh environments. 

Automated monitoring systems can collect and analyze 

data from various sensors deployed throughout maritime 

equipment and communication infrastructure. By using 

machine learning algorithms, these systems can predict 

potential failures and recommend maintenance actions 

before issues escalate (Ibokette et al., 2024). For instance, 

predictive analytics can identify wear and tear in 

communication equipment, allowing timely interventions 

that ensure continued operational efficiency (Sowmya & 

Anita 2023). 

 

 Adaptive Communication Protocols 
Automated systems can also facilitate the use of 

adaptive communication protocols that adjust to changing 

environmental conditions. For example, software-defined 

networking (SDN) can enable the reconfiguration of 

communication pathways in response to signal 

degradation due to weather impacts. This adaptability 

ensures that maritime operations maintain connectivity 

even when faced with challenging conditions (Cardona et 

al., 2020). By automating these adjustments, organizations 

can minimize manual intervention and enhance the 

reliability of their communication systems. 

 

 Data Integrity and Security 
In harsh maritime environments, ensuring data 

integrity and security is paramount. Automated systems 

can implement robust cybersecurity measures that protect 

data transmitted over potentially vulnerable connections. 

For instance, end-to-end encryption and automated 

intrusion detection systems can safeguard communications 

from interception or tampering, ensuring that critical 

information remains secure (Tinga et al., 2017). The 

automation of security protocols also enables real-time 

threat detection and response, further enhancing the 

resilience of maritime networks against cyber threats. 

 

E. Case Studies of Automation in Adverse Maritime 

Conditions 

Automation in maritime operations has been 

increasingly recognized as a critical solution for 

overcoming challenges posed by adverse environmental 

conditions. This section discusses several case studies that 

demonstrate the effective implementation of automation 

technologies in enhancing operational resilience, safety, 

and efficiency in harsh maritime settings. 

 

 Autonomous Vessels in Extreme Weather Conditions 
One prominent case study involves the use of 

autonomous vessels for operations in severe weather 

conditions. The Yara Birkeland, an autonomous container 

ship, is designed to transport goods without a crew, aiming 

to reduce emissions and enhance safety (Rødseth et al., 

2023). During trials, the vessel operated in rough sea 

conditions, utilizing advanced automation technologies for 

navigation and obstacle avoidance. The ship's automation 

systems continuously monitored environmental data, 

allowing it to adjust its course and speed dynamically to 

maintain safety and efficiency during storms (Evensen 

2020). This case illustrates how automation can enhance 

operational safety in extreme maritime environments by 

enabling real-time decision-making. 

 

In Figure 13, the Instrument Layer, positioned at the 

base, includes navigational sensors such as AIS and 

GNSS, which are essential for navigational awareness, 

along with internal automation sensors that monitor 

parameters like pressure, temperature, torque, and 

vibration, as well as actuators that manage the ship's 

machinery operations. These sensors and actuators are 

grouped by their functions at the Process Layer and 

connected to system components within the Integrated 

Ship Control Layer, where key ship operations are 

conducted. Above the Integrated Ship Control Layer is the 

General Ship Layer, where additional administrative 

functions like reporting and record-keeping are carried out. 

At the top of the architecture is the Off Ship Layer, which 

facilitates communication with external entities (Cho et 

al., 2022). 
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Fig 13 Architectural Overview f Unmanned Ships 

Source: Cho, S., et al., (2022). Cybersecurity Considerations in Autonomous Ships. 

 
 Automated Monitoring Systems for Offshore Platforms 

Another case study is the implementation of 

automated monitoring systems on offshore oil platforms, 

where harsh weather conditions and corrosive 

environments pose significant operational challenges. The 

Equinor-operated Johan Sverdrup field in the North Sea 

employs automated monitoring technologies that utilize 

IoT sensors to collect real-time data on equipment 

performance and environmental conditions (Ibokette et al., 

2024). These systems automate data analysis and anomaly 

detection, enabling proactive maintenance actions and 

reducing the risk of operational failures during severe 

weather events. The automated systems have improved 

safety and efficiency by facilitating remote monitoring and 

reducing the need for personnel to operate in hazardous 

conditions. 

 

 Predictive Maintenance in Fishing Vessels 
The fishing industry is another area where automation 

has proven beneficial in adverse conditions. The case of 

the commercial fishing vessel Ocean Harvest illustrates 

the implementation of predictive maintenance solutions to 

ensure equipment reliability during harsh weather. The 

vessel utilizes an automated monitoring system that 

collects data on engine performance, temperature, and 

vibration levels (Ibokette et al., 2024). By applying 

machine learning algorithms, the system predicts potential 

failures and schedules maintenance before critical 

breakdowns occur. This approach has allowed the vessel 

to maintain operational readiness and reduce downtime, 

even in adverse weather conditions, thereby enhancing 

overall fishing efficiency. 

 

 Automated Traffic Management Systems 
The Port of Rotterdam has implemented an 

automated traffic management system to optimize 

maritime traffic flow in adverse weather conditions. The 

system uses real-time data from various sources, including 

weather forecasts, vessel traffic information, and port 

infrastructure conditions, to automate decision-making 

processes (Marks et al., 2013). During storms or foggy 

conditions, the automated system can reroute vessels and 

adjust schedules to minimize risks and delays. This 

automation not only improves safety by preventing 

collisions but also enhances operational efficiency by 

optimizing berth utilization and reducing turnaround times 

for vessels. 

 

 Remote-Controlled Drones for Search and Rescue 

Operations 
In maritime search and rescue operations, automation 

technologies have demonstrated their effectiveness in 

adverse conditions. The use of remote-controlled drones 

has been explored in various case studies, including 

operations conducted by the Norwegian Coast Guard. 

Drones equipped with advanced sensors and imaging 

technologies are deployed to survey large areas of ocean 

during search missions, even in challenging weather 

(Panić et al., 2021). The drones can relay real-time data to 

command centres, facilitating faster decision-making and 

more efficient search patterns. This automation enhances 

the Coast Guard's ability to respond to emergencies in 

harsh maritime environments while minimizing the risk to 

personnel. 

 

V. CHALLENGES AND LIMITATIONS 

 

A. Technical Challenges in Maritime Cybersecurity and 
Automation 

The integration of automation and cybersecurity 

solutions in maritime operations presents a myriad of 

technical challenges. These challenges arise from the 

unique characteristics of maritime environments, the 
complexity of maritime systems, and the ever-evolving 

landscape of cyber threats. This section reveals some of 

the key technical challenges that maritime organizations 

face when implementing automated systems and 

cybersecurity measures. 
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 Legacy Systems Integration 
One of the significant technical challenges in 

maritime operations is the integration of new automation 

and cybersecurity technologies with legacy systems. Many 

vessels and maritime infrastructure still rely on outdated 

technologies that were not designed with modern 

cybersecurity threats in mind (Ibokette et al., 2024). 

Integrating automated solutions with these legacy systems 

often requires significant customization, which can lead to 

increased costs and extended implementation timelines 

(Progoulakis et al., 2021). Moreover, the lack of 

interoperability between legacy and modern systems can 

create vulnerabilities, making it difficult to ensure a 

seamless and secure operational environment. 

 

 Data Management and Analytics 
The maritime industry generates vast amounts of data 

from various sources, including sensors, navigation 

systems, and environmental monitoring tools. Effectively 

managing and analyzing this data presents a significant 

technical challenge (Idoko et al., 2024). Automated 

systems require robust data management frameworks to 

ensure data integrity, accuracy, and accessibility. 

Moreover, the analysis of large datasets often necessitates 

advanced machine learning and artificial intelligence 

algorithms, which can be complex to implement and 

optimize for specific maritime applications (Ijiga et al., 

2024). The challenge lies not only in processing this data 

in real-time but also in deriving actionable insights that 

enhance decision-making. 

 

 Cybersecurity Threat Landscape 
The maritime sector faces a diverse range of 

cybersecurity threats, including malware attacks, phishing 

attempts, and denial-of-service (DoS) attacks (Mishra et 

al., 2024). These threats are continually evolving, 

necessitating the implementation of advanced intrusion 

detection systems (IDS) and automated response 

mechanisms. However, developing effective IDS that can 

operate in the complex and dynamic maritime 

environment is a significant technical challenge (Al Ali et 

al., 2021). For instance, the high volume of legitimate data 

traffic can lead to false positives, where benign activities 

are incorrectly flagged as threats. Balancing sensitivity and 

specificity in IDS is crucial for ensuring operational 

continuity while maintaining security. 

 

 Limited Connectivity and Redundancy 

Maritime operations often take place in remote and 

isolated areas where connectivity can be limited or 

unreliable. This poses challenges for the deployment of 

automated systems that rely on constant data exchange and 

communication (Chi et al., 2020). In cases of limited 

connectivity, automated systems may struggle to receive 

updates or operate effectively, increasing the risk of 

operational failures. Furthermore, ensuring redundancy in 

communication pathways to maintain connectivity during 

adverse conditions is a technical challenge that requires 
careful planning and investment in infrastructure (Wei et 

al., 2021). 

 

 

 

 Environmental Factors 
Harsh environmental conditions, such as extreme 

weather, high salinity, and temperature fluctuations, can 

adversely affect the performance of automated systems 

and communication equipment. Corrosion, signal 

degradation, and equipment failure are common issues 

faced in maritime environments (Sowmya & Anita 2023). 

Designing automation solutions that are resilient to these 

factors requires extensive testing and validation under 

various environmental conditions. Additionally, 

maintaining the reliability of sensor systems and 

communication links in such settings adds to the 

complexity of system design and implementation (Ibokette 

et al., 2024). 

 

 Regulatory Compliance 
Compliance with maritime regulations and standards 

presents another technical challenge. Various international 

and national regulations govern cybersecurity practices in 

maritime operations, including the International Maritime 

Organization (IMO) guidelines and the General Data 

Protection Regulation (GDPR) (Mishra et al., 2024). 

Ensuring that automated systems meet these regulatory 

requirements often involves intricate technical 

considerations, such as data protection measures and 

reporting protocols. Organizations must also stay updated 

with evolving regulations, which can necessitate frequent 

adjustments to their cybersecurity frameworks and 

automation systems. 

 

B. Operational Challenges in Maritime Cybersecurity 

and Automation 
The maritime industry is undergoing a significant 

transformation with the integration of automation and 

cybersecurity technologies. However, several operational 

challenges impede the successful implementation and 

utilization of these innovations. This section outlines key 

operational challenges faced by maritime organizations in 

their efforts to enhance cybersecurity and automation. 

 
 Skilled Workforce Shortage 

One of the foremost operational challenges in the 

maritime sector is the shortage of skilled personnel capable 

of managing and maintaining advanced automated systems 

and cybersecurity measures. Many maritime organizations 

struggle to find employees with the requisite knowledge in 

cybersecurity, data analysis, and automation technologies 

(Dasgupta et al., 2022). This skills gap can hinder the 

effective deployment and operation of automated systems, 

as well-trained personnel are essential for monitoring, 

troubleshooting, and ensuring compliance with 

cybersecurity protocols (Fruth & Teuteberg, 2017). The 

ongoing technological advancements further exacerbate 

this challenge, as existing workforce training programs 

may not keep pace with emerging technologies. 

 

 Integration of Systems and Processes 

Integrating new automated systems with existing 
maritime operations and processes poses a considerable 

operational challenge. Many maritime organizations rely 

on a diverse array of legacy systems and technologies that 

were not designed to work together seamlessly 

(Progoulakis et al., 2021). Ensuring compatibility between 
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these systems and new automation solutions can lead to 

complications and increased operational risks. 

Additionally, the integration process often necessitates 

extensive testing and validation to ensure that all 

components function correctly together, which can be 

time-consuming and resource-intensive (Wei et al., 2023). 

 

 Cybersecurity Threats and Incident Response 
The dynamic nature of cybersecurity threats presents 

a significant operational challenge for maritime 

organizations. Cyberattacks are becoming increasingly 

sophisticated, and the maritime sector is a prime target due 

to its reliance on interconnected systems (Chi et al., 2020). 

Organizations must implement comprehensive 

cybersecurity frameworks and incident response plans to 

mitigate risks effectively. 

 

However, the rapid evolution of cyber threats makes 

it challenging to keep security measures up to date (Al Ali 

et al., 2021). Additionally, incident response requires 

coordination among various stakeholders, which can 

complicate the process and lead to delays in addressing 

security breaches. 

 

 Operational Downtime and Recovery 

Operational downtime caused by cybersecurity 

incidents or failures in automated systems can 

significantly impact maritime operations. Unplanned 

outages can lead to financial losses, disruptions in supply 

chains, and reputational damage (Idoko et al., 2024). 

Organizations must establish robust contingency plans and 

recovery strategies to minimize the impact of such 

incidents. However, the effectiveness of these plans is 

often tested during real crises, revealing gaps in 

preparedness and response capabilities (Sowmya & Anita 

2023). Continuous training and simulation exercises are 

necessary to ensure that personnel are equipped to handle 

emergencies effectively. 

 

VI. FUTURE DIRECTIONS AND 

OPPORTUNITIES 

 

A. Advances in AI for Cybersecurity 
Artificial Intelligence (AI) has emerged as a 

transformative technology in the field of cybersecurity, 

significantly enhancing the ability of organizations to 

detect, respond to, and mitigate cyber threats. As cyber 

threats become increasingly sophisticated and pervasive, 

AI-driven solutions are proving essential for safeguarding 

sensitive data and ensuring operational continuity. This 

section outlines recent advances in AI technologies 

applied to cybersecurity, highlighting their impact, 

effectiveness, and future potential. 

 

 Enhanced Threat Detection 
One of the primary applications of AI in 

cybersecurity is threat detection. Machine learning 

algorithms are capable of analyzing vast amounts of data 
to identify patterns indicative of potential security 

breaches. For instance, anomaly detection systems utilize 

unsupervised learning techniques to establish baseline 

behavior for network activity and flag deviations that may 

signify an intrusion (Dasgupta et al., 2022). Research has 

shown that AI-based threat detection systems can 

significantly reduce false positives while improving the 

speed and accuracy of identifying potential threats (Akpan 

et al., 2022). 

 

 Predictive Analytics 
AI technologies are increasingly being used for 

predictive analytics in cybersecurity. By using historical 

data and machine learning models, organizations can 

forecast potential threats and vulnerabilities before they 

materialize. Predictive models analyze trends and patterns 

in cyber incidents, allowing organizations to take proactive 

measures to mitigate risks (Ijiga et al., 2024). For example, 

AI-driven threat intelligence platforms can aggregate data 

from multiple sources to predict emerging threats, helping 

organizations prioritize their security investments 

effectively (Pitropakis et al., 2020). 

 

 Automated Incident Response 
AI is revolutionizing incident response by enabling 

automation and orchestration of security protocols. 

Automated systems can respond to detected threats in real 

time, significantly reducing the response time to incidents 

(Uzoma et al., 2023). AI-driven Security Orchestration, 

Automation, and Response (SOAR) solutions integrate 

various security tools and streamline incident response 

processes, allowing security teams to focus on more 

complex threats. Studies indicate that organizations 

employing AI-driven automation experience a 

considerable reduction in incident response times, 

enhancing overall cybersecurity resilience (Uzoma et al., 

2023). 

 

 User Behavior Analytics (UBA) 
User Behavior Analytics (UBA) employs AI 

algorithms to monitor user activity and detect anomalies 

that may indicate compromised accounts or insider threats. 

By establishing a baseline of normal user behavior, UBA 

systems can identify unusual patterns, such as 

unauthorized access or unusual data transfers (G. Martín et 

al., 2021). This capability is critical for organizations in 

preventing data breaches and ensuring compliance with 

regulatory standards, as it enables timely detection and 

mitigation of insider threats (Singh et al., 2020). 

 

 AI in Network Security 
AI is increasingly integrated into network security 

solutions to enhance the protection of critical 

infrastructure. AI-driven firewalls and intrusion detection 

systems can analyze network traffic in real time, adapting 

to new threats and evolving attack vectors (Sowmya & 

Anita 2023). These systems utilize machine learning 

algorithms to recognize legitimate traffic patterns, 

enabling them to block suspicious activity proactively. 

Research indicates that AI-powered network security 

solutions significantly enhance the overall security posture 

of organizations by reducing vulnerabilities and improving 

threat response (Ijiga et al., 2024). 
 

B. Development of Maritime-Specific AI Models 
The maritime industry is increasingly turning to 

artificial intelligence (AI) to enhance operational 

efficiency, safety, and security. However, the unique 
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challenges and requirements of maritime operations 

necessitate the development of maritime-specific AI 

models tailored to address the sector's complexities. This 

section discloses the development of these specialized AI 

models, highlighting their applications, benefits, and the 

factors influencing their design. 

 

 Understanding Maritime-Specific Challenges 
Maritime operations encompass a range of activities, 

including navigation, logistics, and maintenance, all of 

which present unique challenges. These challenges include 

harsh environmental conditions, geographical isolation, 

complex regulatory frameworks, and the need for real-time 

decision-making (Fruth & Teuteberg, 2017). 

Consequently, AI models designed for the maritime 

industry must consider these factors to be effective. For 

example, models need to account for varying weather 

patterns, tidal changes, and navigational hazards that are 

critical for safe operations (Rawson & Brito, 2023). 

 

 Data Collection and Integration 

The development of maritime-specific AI models 

relies heavily on data collection from various sources, 

including satellite imagery, weather data, ship sensors, and 

AIS (Automatic Identification System) data. Integrating 

this diverse data into a cohesive framework is crucial for 

training AI models effectively. Researchers have 

emphasized the importance of high-quality, real-time data 

to enhance the predictive capabilities of maritime AI 

models (Dalaklis et al., 2023). Additionally, the 

integration of IoT (Internet of Things) devices on vessels 

allows for continuous data collection, enabling AI models 

to adapt to changing conditions in real time (Ibokette et al., 

2024). 

 

 Machine Learning Techniques for Maritime 
Applications 

Several machine learning techniques have been 

successfully applied to develop maritime-specific AI 

models. For instance, supervised learning algorithms are 

commonly used for predictive maintenance by analyzing 

historical data to forecast equipment failures (Simion et al., 

2024). Unsupervised learning techniques, such as 

clustering, are utilized to identify anomalies in vessel 

behavior, which can indicate potential security threats or 

operational inefficiencies (Adu-Twum et al., 2024). 

Furthermore, reinforcement learning is being explored for 

optimizing route planning and fuel efficiency, enabling 

vessels to navigate more efficiently under varying 

conditions (Dasgupta et al., 2022). 

 

 AI for Predictive Analytics in Maritime Operations 
Predictive analytics powered by AI is transforming 

maritime operations by enabling organizations to 

anticipate potential issues before they arise. For example, 

AI models can analyze historical voyage data to predict 

delays caused by weather conditions or port congestion 

(Mao & Larsson, 2023). This capability not only enhances 
operational efficiency but also improves customer 

satisfaction by providing more accurate arrival times. 

Moreover, predictive maintenance models can optimize 

maintenance schedules based on usage patterns, reducing 

downtime and operational costs (Tinga et al., 2017). 

 Enhanced Safety and Navigation 
AI models specifically designed for navigation and 

safety have the potential to significantly reduce accidents 

at sea. For instance, collision avoidance systems utilize AI 

algorithms to analyze real-time data from surrounding 

vessels, weather conditions, and navigational charts to 

suggest optimal routes (Pedrielli et al., 2019). These 

systems can alert operators to potential collisions, enabling 

timely interventions to prevent accidents. Additionally, 

AI-driven decision support systems can assist crew 

members in making informed choices during critical 

situations, thereby enhancing overall safety (Ray et al., 

2013). 

 

C. Collaboration Between Maritime and Tech Industries 

The maritime industry is experiencing a significant 

transformation driven by the adoption of advanced 

technologies, particularly those originating from the tech 

industry. Collaboration between these two sectors has 

become essential to address the complexities of modern 

maritime operations, enhance safety, improve efficiency, 

and mitigate environmental impacts. 

 

 The Need for Collaboration 
The maritime industry faces numerous challenges, 

including rising operational costs, regulatory compliance, 

environmental sustainability, and cybersecurity threats. To 

effectively address these challenges, maritime companies 

are increasingly looking to technology firms for innovative 

solutions (Fruth & Teuteberg, 2017). By using 

technologies such as artificial intelligence (AI), the 

Internet of Things (IoT), and big data analytics, maritime 

operators can enhance operational efficiency and adapt to 

the rapidly changing maritime landscape (Idoko et al., 

2024). 

 

 Areas of Collaboration 

 

 Data Analytics and Decision Support 
One of the most prominent areas of collaboration 

between the maritime and tech industries is in data 

analytics. Technology firms are providing maritime 

companies with tools to collect, analyze, and interpret vast 

amounts of data from various sources, including sensors 

on vessels, weather data, and AIS (Automatic 

Identification System) information (Šekularac-Ivošević & 

Milošević 2019). This collaboration facilitates better 

decision-making, predictive maintenance, and operational 

optimization. For example, big data analytics can identify 

patterns in fuel consumption and port operations, allowing 

shipping companies to reduce costs and improve 

efficiency (Bari et al., 2016). 

 

 Cybersecurity Solutions 

As the maritime industry becomes increasingly 

digitized, the importance of cybersecurity has grown. 

Collaboration with tech firms specializing in cybersecurity 

is vital for safeguarding critical infrastructure and sensitive 
data from cyber threats (Akpan et al., 2022). Technology 

companies are developing AI-driven cybersecurity 

solutions that can monitor maritime networks in real time, 

detect anomalies, and respond to potential threats 

proactively. By partnering with tech firms, maritime 
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organizations can enhance their cybersecurity posture and 

ensure compliance with regulatory standards (Tam & 

Jones, 2018). 

 

 Autonomous and Remote Operations 

The development of autonomous vessels and remote 

operations represents another significant area of 

collaboration. Tech companies are at the forefront of 

creating the AI and sensor technologies necessary for 

autonomous navigation (Idoko et al., 2024). 

Collaborations between maritime firms and tech startups 

have led to the testing and implementation of autonomous 

vessels that can operate with minimal human intervention, 

enhancing safety and reducing labor costs. These 

partnerships are essential for navigating the regulatory 

landscape and ensuring that autonomous technologies 

meet safety and operational standards (Idoko et al., 2024). 

 

 Challenges in Collaboration 
Despite the numerous benefits of collaboration, 

several challenges hinder effective partnerships between 

the maritime and tech industries. One significant challenge 

is the cultural gap between the two sectors. The maritime 

industry has traditionally been conservative and slow to 

adopt new technologies, while tech firms are often more 

agile and innovative (Šekularac-Ivošević & Milošević, 

2019). This cultural difference can lead to 

misunderstandings and misaligned expectations. 

 

Additionally, the complexity of maritime operations 

requires tailored solutions that may not always align with 

the standardized products offered by tech companies. 

Successful collaboration requires a deep understanding of 

maritime processes and operational nuances, which can be 

challenging for tech firms that lack industry experience 

(Fruth & Teuteberg, 2017). 

 

VII. SUMMARY AND CONCLUSION 

 
A. Summary of Key Findings 

The maritime industry is at a pivotal juncture, 

navigating the challenges posed by an increasingly 

complex operational landscape characterized by rising 

cybersecurity threats, environmental concerns, and the 

demands for greater efficiency and safety. The integration 

of advanced technologies, particularly artificial 

intelligence (AI) and network automation, has the potential 

to revolutionize maritime operations, making them more 

resilient, secure, and sustainable. 

 

The influence of extreme environmental conditions 

on maritime operations cannot be overstated. Harsh 

weather and geographical isolation exacerbate existing 

vulnerabilities, necessitating robust cybersecurity 

frameworks to safeguard critical systems and ensure 

uninterrupted operations (Akpan et al., 2022). The 

integration of AI-driven intrusion detection systems (IDS) 

can significantly enhance the maritime industry’s ability to 
mitigate these risks through real-time monitoring and 

adaptive response mechanisms (Bari et al., 2016). 

 

 

While the benefits of technology adoption in the 

maritime industry are clear, challenges remain, including 

the need for cultural alignment between maritime and tech 

sectors, data integration issues, and regulatory compliance. 

Addressing these challenges requires a concerted effort 

from all stakeholders involved, including policymakers, 

industry leaders, and technology providers. Continued 

investment in research and development, along with strong 

partnerships, will be vital in shaping the future of maritime 

operations (Idoko et al, 2024). 

 

B. Conclusion 

Finally, the path forward for the maritime industry 

lies in embracing digital transformation through strategic 

collaboration with tech partners. By adopting cutting-edge 

technologies and innovative practices, the maritime sector 

will not only enhance its operational capabilities but also 

build a more sustainable and secure future, ultimately 

contributing to the resilience of global supply chains. 
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