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Abstract

The maritime industry is increasingly confronted with a myriad of cybersecurity challenges exacerbated by extreme
environmental conditions, technological advancements, and heightened reliance on automation. This review paper discusses
the intersection of these factors, focusing on the adoption of artificial intelligence (Al)-based intrusion detection systems
(IDS) and network automation as vital strategies for mitigating cybersecurity risks. The paper begins by outlining the unique
cybersecurity threats faced by the maritime sector, which include data breaches, phishing attacks, and malware threats, all
amplified by adverse weather and geographical isolation. In light of these challenges, the rationale for integrating Al-driven
solutions into maritime operations is discussed. Al-based IDS can enhance threat detection capabilities through advanced
machine learning algorithms that adapt to evolving cyber threats while minimizing false positives. Additionally, network
automation can improve connectivity and data security, facilitating real-time monitoring and response to incidents. The review
also addresses the critical need for collaboration between maritime and technology industries, emphasizing how partnerships
can foster innovation and provide tailored solutions to the sector’s specific needs. Furthermore, the paper examines current
implementations and case studies that illustrate successful applications of Al and automation in adverse maritime conditions.
While recognizing the potential benefits, the review highlights the technical and operational challenges inherent in these
implementations, including data integration, regulatory compliance, and cultural differences between sectors. Ultimately, this
paper aims to provide a comprehensive overview of the state of maritime cybersecurity and the pivotal role of Al and
automation in shaping a resilient, secure maritime future. The findings underscore the importance of ongoing research and
development, collaborative efforts, and the necessity of adaptable strategies to safeguard maritime operations against the
evolving landscape of cyber threats.

Keywords: Maritime Cybersecurity, Al-Based Intrusion Detection Systems (IDS), Network Automation, Extreme
Environmental Conditions and Mitigation.

I INTRODUCTION

A. Overview of Cybersecurity Challenges in the Maritime
Industry.

The maritime industry, characterized by its reliance

on increasingly sophisticated digital systems, faces a

growing number of cybersecurity challenges. As vessels

and ports integrate more operational technologies (OTs)

and information technologies (ITs) to improve efficiency,

they become more vulnerable to cyber-attacks. One
significant challenge is the complexity of maritime
networks, which often involve a combination of aging
legacy systems and newer digital platforms. This
combination creates potential entry points for
cybercriminals, especially as many of these older systems
were not designed with modern cybersecurity in mind
(Nawaz et al., 2024).
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A notable risk comes from the maritime industry's
dependence on satellite communications for both
operational and commercial purposes. Cybercriminals can
exploit vulnerabilities in these systems to intercept or
manipulate communications, potentially leading to
significant disruptions in navigation, cargo handling, or
vessel tracking (ljiga et al., 2024). This issue is
exacerbated by the fact that maritime vessels often operate
in isolated areas where real-time monitoring and support
are limited, making it more difficult to detect and respond
to cyber threats promptly.

Also, human factors contribute significantly to
cybersecurity risks. Crew members may lack adequate
training in cybersecurity protocols, inadvertently exposing
systems to malware or phishing attacks. This is further
complicated by the transient nature of maritime personnel,
with crews frequently changing, making consistent

cybersecurity practices challenging to enforce (Jones et al.,
2016).

In addition, the increasing connectivity between
ships, ports, and logistics companies through the Internet
of Things (10T) adds another layer of complexity. While
10T technologies improve operational efficiency, they also
widen the attack surface. Hackers could potentially target
these connected systems, disrupting the supply chain, and
causing significant economic and operational impacts
(Cho et al., 2022). The interconnectedness of maritime
operations means that a single cybersecurity breach in one
part of the system can have cascading effects throughout
the industry.

The illustrations in figure 1 depict an overview of the
cybersecurity within the maritime space designed to allow
offshore vessels to access real time data and critical
updates under secured conditions.

Marine Digital mw y

Fig 1 Overview of Cybersecurity within the Maritime Environment.

Extreme environmental conditions significantly
impact maritime networks and systems, posing challenges
to both cybersecurity and overall operational reliability.
Maritime operations occur in harsh environments, where
weather conditions such as storms, high humidity,
saltwater exposure, and extreme temperatures can degrade
network infrastructure, disrupt communication systems,
and expose vulnerabilities in both hardware and software
(WEei et al., 2021). For instance, strong winds and rough
seas can physically damage equipment, while
electromagnetic interference from storms can disrupt
satellite communications, impairing the functioning of
critical systems, such as GPS, AIS (Automatic
Identification System), and radar (Yuan et al., 2017).

These environmental challenges are exacerbated by
the isolated nature of maritime operations, where ships and
offshore platforms often operate far from maintenance
hubs and reliable network support. Prolonged exposure to
such conditions can weaken system components, leading
to increased risk of hardware failures or compromised
communication links (Alqurashi et al., 2022). Moreover,
saltwater corrosion and humidity can affect the integrity of
electronic systems and network devices, leading to
increased downtime and the need for frequent repairs or
replacements.

Extreme conditions not only strain physical systems
but also create opportunities for cyber-attacks.
Environmental factors can cause intermittent connectivity,
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leading to delays in updates or patches that are crucial for
securing maritime networks. Cyber attackers may exploit
such downtimes to infiltrate systems, especially when
vessels are operating autonomously with limited human
oversight (Tabish & Chaur-Luh, 2024). Additionally,
during environmental crises such as storms, maritime
personnel are often preoccupied with safety operations,
potentially neglecting cybersecurity protocols, thus
heightening the risk of successful attacks.

In extreme environments, maintaining secure and
reliable communication systems is a significant challenge.
Satellite communication, the backbone of maritime
networks, is particularly vulnerable to environmental
disruptions, leading to loss of real-time data transmission
and leaving vessels exposed to navigational risks
(Alqurashi et al., 2022). As maritime operations increase
their reliance on automation and the Internet of Things
(1oT), ensuring the resilience of these systems in harsh
environmental conditions becomes paramount for
maintaining both cybersecurity and operational integrity.

Figure 2 illustrates the maritime communications
workflow execution framework, where communication
workflows are scheduled and managed using cloud-based
resources. Users submit communication workflows to a
task-oriented smart controller, which analyzes them and
categorizes the resulting tasks into three groups: high-
performance latency-aware prioritized tasks,
computational tasks, and data-oriented tasks. These tasks
are then forwarded to the maritime communication
workflow scheduler. Simultaneously, the cloud computing
resources are assessed by a resource-aware smart
controller, which classifies them into three types: high-
performance latency-aware resources, computation-aware
resources, and data-aware resources. These resources are
also submitted to the scheduler. The maritime
communication workflow scheduler matches tasks to
appropriate cloud resources and dispatches them to the
execution engine. Once execution is complete, the results
are returned to the user (Ahmad et al., 2023).
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Fig 2 A Framework for Maritime Communication Workflows Execution.
Source: Ahmad, Z., Acarer, T., & Kim, W. (2023). Optimization of maritime communication workflow execution with a
task-oriented scheduling framework in cloud computing

B. Motivation for Al-Based Solutions

The maritime industry is increasingly relying on
automation and digital technologies to improve
operational efficiency, safety, and profitability. This
digital transformation is driven by advancements in
artificial intelligence (Al), machine learning, the Internet
of Things (loT), and robotics, which are helping to
optimize navigation, cargo handling, and overall vessel
management (Fruth & Teuteberg, 2017). One of the most

significant applications of automation in maritime
operations is the rise of autonomous ships, which utilize
advanced navigation systems and sensors to operate with
minimal human intervention. These vessels can
significantly reduce operational costs and human error,
while also enhancing safety and fuel efficiency (Evensen
2020).
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Digital technologies are also transforming port
operations through automation in cargo handling and
logistics management. Automated cranes, guided vehicles,
and digital tracking systems enable ports to manage cargo
more efficiently, reducing turnaround times and improving
supply chain coordination (Awotiwon et al., 2024). These
innovations in port automation also facilitate real-time
tracking of cargo, allowing for better transparency and
coordination  between shipping companies, port
authorities, and logistics providers.

In addition, the IoT is playing a crucial role in the
digitization of maritime operations. By connecting ships,
ports, and offshore platforms through smart sensors and
devices, 10T enables real-time monitoring of equipment
performance, fuel consumption, and environmental
conditions (ldoko et al., 2024). This data-driven approach
helps in predictive maintenance, reducing the likelihood of
equipment failures, and ensuring the operational readiness
of vessels even in challenging conditions. For instance,
sensors can detect mechanical issues before they become
critical, allowing for timely maintenance and avoiding
costly downtime.

However, the increasing reliance on automation and
digital technologies also raises cybersecurity concerns. As
more systems become interconnected, the attack surface
for cyber threats expands, making maritime operations
vulnerable to potential disruptions (Tam & Jones, 2018).
Protecting these digital infrastructures from cyber-attacks
becomes a critical priority, especially as the industry
moves toward more autonomous and loT-enabled
operations.

The adoption of Al-based Intrusion Detection
Systems (IDS) and network automation in maritime
cybersecurity is increasingly necessary to address the
growing sophistication of cyber threats and the complexity
of modern maritime networks. Traditional IDS, which rely
on predefined signatures of known threats, are often
insufficient for identifying emerging, unknown, or
evolving threats. Al-based IDS offer a significant
advantage by using machine learning algorithms to detect
anomalies and patterns indicative of new or evolving
cyberattacks, making them particularly suited for complex
and dynamic maritime environments (kumar et al., 2021).

One of the key rationales for using Al in IDS is its
ability to process vast amounts of data in real-time and
identify subtle irregularities that might escape traditional
systems. Maritime operations generate large volumes of
data from various sources, such as navigation systems,
onboard sensors, and communication networks. Al-based
IDS can continuously monitor this data, detect abnormal
patterns, and trigger alerts for potential security breaches
before they escalate into more severe incidents
(Katterbauer 2022). This proactive approach reduces the
time required to detect and respond to attacks, ultimately
enhancing the overall security posture of maritime
networks.

Additionally, Al-driven automation can improve
resilience during cyberattacks by autonomously applying
security patches, updating firewall configurations, or
deploying additional defensive measures based on the
nature of the threat (Katterbauer 2022). Given that
maritime operations often occur in remote locations with
limited access to real-time IT support, the ability to
automate threat detection and response significantly
enhances the system's security. This is especially
important for vessels and offshore platforms where manual
intervention may not be immediately available.

C. Objectives of the Review

The primary objective of this review is to analyse
how Al-based Intrusion Detection Systems (IDS) and
network automation can be effectively deployed to
mitigate cybersecurity risks in maritime operations,
particularly under extreme environmental conditions. As
cyber threats continue to evolve, maritime systems, which
are becoming increasingly digital and interconnected, are
exposed to new vulnerabilities (Tam & Jones, 2018).
Therefore, the review seeks to provide a comprehensive
understanding of the current cybersecurity landscape in the
maritime industry, identify the challenges posed by
extreme environments, and assess the capabilities of Al-
driven solutions in addressing these challenges.

Another key objective is to evaluate the effectiveness
of Al-based IDS in detecting and mitigating emerging
cyber threats in maritime networks. Traditional IDS
models often struggle to keep up with new, unknown
attacks, whereas Al-based systems can adopt machine
learning to identify anomalies and suspicious patterns that
signal potential breaches (kumar et al., 2021). This review
aims to highlight the potential of Al to improve threat
detection, particularly in environments where traditional
methods may fail.

Finally, this review will examine the role of network
automation in maintaining operational continuity during
cyberattacks or environmental disruptions. Network
automation, powered by technologies such as Software-
Defined Networking (SDN) and Network Function
Virtualization (NFV), allows for real-time reconfiguration
of networks to isolate compromised systems, ensuring the
overall resilience of maritime operations (Katterbauer,
2022). By assessing case studies and research on
automated network defense, the review will underscore
how these technologies can enhance the security and
reliability of maritime communication systems.

1. CYBERSECURITY THREATS IN
MARITIME ENVIRONMENTS

A. Types of Cybersecurity Threats

The maritime industry faces a diverse range of
cybersecurity threats, driven by the increasing digitization
of operations and reliance on interconnected systems.
These threats pose significant risks to the safety, security,
and efficiency of maritime operations, especially in the
context of cyber-physical systems that control critical
functions such as navigation, cargo management, and
communication.
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» Malware Attacks

Malware, including ransomware, is one of the most
common cybersecurity threats in the maritime sector.
Ransomware attacks encrypt critical systems, such as
those used for cargo tracking or navigation, demanding a
ransom to restore functionality. A notable example was the
2017 attack on the global shipping company Maersk,
where the NotPetya malware caused operational disruption
across ports and shipping lines, resulting in a multi
million-dollar loss (Adu-Twum et al., 2024). Malware can
also be introduced via infected USB devices, emails, or
compromised software updates, making it crucial for
maritime organizations to maintain robust malware
defenses (Tam & Jones, 2018).

» Phishing and Social Engineering

Phishing and social engineering attacks target
individuals within maritime organizations to gain
unauthorized access to networks or sensitive information
as shown in figure 3. Cybercriminals use fraudulent
emails, messages, or websites to deceive employees into
revealing login credentials or downloading malicious
software. These attacks exploit human vulnerabilities
rather than technical ones, making them harder to detect
and prevent (Ayoola et al., 2024). In a maritime context,
social engineering attacks can lead to unauthorized access
to ship control systems, cargo manifests, or financial
transactions.

PHISHING

Fig 3 Phishing as a Cyberthreat in the Maritime Space.

» Denial-of-Service (DoS) and Distributed Denial-of-
Service (DDoS) Attacks
Denial-of-Service (DoS) and Distributed Denial-of-
Service (DDoS) attacks aim to disrupt the availability of
network services by overwhelming systems with a flood of
traffic. In the maritime industry, such attacks can cripple
communication networks, GPS, or navigation systems,
rendering vessels unable to operate effectively (Jones et
al., 2016). DDosS attacks, in particular, are challenging to
mitigate, as they often involve multiple compromised
systems sending massive volumes of data to the target.
This type of attack can paralyze port operations or disable
critical onboard systems, leading to severe operational
delays and financial losses.

» Supply Chain Attacks

In the highly interconnected maritime industry,
supply chain attacks represent a growing threat. These
attacks occur when cybercriminals compromise third-
party vendors, suppliers, or service providers to infiltrate
maritime networks. For example, a compromised software
update from a vendor could introduce malware into a
ship’s control systems, or a third-party service provider
could inadvertently expose sensitive data (Nawaz et al.,
2024). With the growing reliance on outsourced
technologies and services, the maritime industry is

vulnerable to supply chain attacks that can have
widespread effects across multiple operations.

» GPS Spoofing and Jamming

GPS spoofing and jamming are unique threats to the
maritime industry, as vessels heavily rely on satellite-
based navigation systems. Spoofing involves transmitting
fake GPS signals to mislead a ship’s navigation system,
causing it to follow an incorrect route. Jamming, on the
other hand, disrupts GPS signals, preventing vessels from
receiving accurate location data (Androjna & Perkovic,
2021). These attacks can be used to hijack vessels, reroute
them into dangerous waters, or cause collisions. Given the
critical role of GPS in navigation, GPS spoofing and
jamming pose serious risks to maritime safety.

The conceptual framework of GPS spoofing is
depicted in Figure 4. The input consists of a stream of
NMEA sentences, generated by at least two GPS receivers
within a network. Alternatively, pre-recorded network
trace files can serve as input. For each detection method,
specific fields within the NMEA sentences that are
relevant to the respective detection approach are identified.
These fields are continuously monitored, and any state
change activates the corresponding detection method(s)
(Spravil et al., 2023).
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B. Impact of Extreme Environmental Conditions
Extreme weather, geographical isolation, and harsh
marine environments significantly exacerbate
cybersecurity risks in the maritime industry. These factors
introduce unique challenges to both the physical and
digital security of maritime operations, making vessels and
offshore platforms more vulnerable to cyber threats and
complicating the detection and response process.

» Impact of Extreme Weather on Cybersecurity

Extreme weather conditions such as storms, high
winds, and rough seas can physically damage onboard
network infrastructure and communication equipment,
leading to operational failures and increasing susceptibility
to cyber-attacks. For instance, during severe weather
events, critical communication systems like satellite links,
which are essential for the ship’s navigation and
coordination, can be disrupted (Wei et al., 2021). These
disruptions create vulnerabilities, as attackers can exploit
periods of limited connectivity or system degradation to
launch cyberattacks. Furthermore, extreme weather often
diverts the attention of the crew to safety operations,
reducing their ability to focus on cybersecurity protocols,
thereby increasing the risk of successful breaches (Jones et
al., 2016).

In particular, weather-related delays in software
updates or security patches can leave systems exposed to
known vulnerabilities. When a ship’s communication
systems are compromised or degraded due to weather
conditions, critical updates are delayed, giving
cybercriminals a window of opportunity to exploit
weaknesses in the system (Alqurashi et al., 2022).
Additionally, natural events like solar storms can cause
electromagnetic interference, affecting GPS signals,
navigation systems, and even onboard cybersecurity

defenses, leaving ships more vulnerable to spoofing and
jamming attacks (Androjna & Perkovic¢, 2021).

» Geographical Isolation and Remote Operations

Maritime vessels often operate in remote areas, far
from shore-based support or reliable internet access, which
poses significant challenges for cybersecurity. The
geographical isolation of ships and offshore platforms
makes it difficult to detect, monitor, and respond to cyber
threats in real-time. Unlike land-based industries, where
cybersecurity personnel can quickly intervene, maritime
operations rely heavily on automated systems and
intermittent communication, which may not be sufficient
to address sophisticated cyberattacks (Mrakovi¢c &
Vojinovi¢ 2019).

Moreover, this isolation often leads to longer
response times for cybersecurity incidents. When a
vessel’s systems are compromised, the limited
connectivity makes it harder to collaborate with shore-
based IT teams or cybersecurity experts, prolonging the
vulnerability period (Katterbauer, 2022). For example, if a
vessel in a geographically isolated location is targeted by
a ransomware attack or suffers a network breach, the crew
may not have the expertise or resources to mitigate the
threat until they are within range of external support.

» Harsh Marine Environments and Equipment
Vulnerability

The maritime environment is inherently harsh, with
high humidity, saltwater exposure, and temperature
extremes that can degrade hardware and networks over
time. Saltwater corrosion is a particular concern, as it can
weaken the physical components of network
infrastructure, leading to equipment failures that expose
systems to cyber threats (Yuan et al., 2017). Additionally,
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the harsh environmental conditions require robust and
resilient systems that can withstand wear and tear, but the
frequent need for repairs or replacements can open the
door to cyber vulnerabilities, especially if compromised
equipment is replaced with insecure or outdated devices.

The frequent maintenance required in these
environments can lead to increased use of third-party
services, which introduces further risk through potential
supply chain attacks. For example, compromised hardware
or software provided by external vendors may introduce
malware into the ship’s network, further exacerbating the
risks posed by the already harsh operating conditions
(Nawaz et al., 2024). Harsh environments can also cause
intermittent power outages, leading to unexpected system
reboots or unsynchronized security measures, further
complicating the ship’s defense against cyber threats
(Okeke et al., 2024).

C. Challenges in Maintaining Connectivity and Secure
Communications.

Maintaining connectivity and secure communications
in maritime operations presents significant challenges due
to the unique operational environment, which includes
geographical isolation, extreme weather conditions, and
the technical limitations of existing communication
infrastructures. These factors complicate the ability of
vessels and offshore platforms to maintain continuous,
secure, and reliable communications, leaving them
vulnerable to cyberattacks and operational disruptions.

» Limited Communication Infrastructure

One of the major challenges in maritime operations is
the limited availability of reliable communication
infrastructure. Ships often operate in remote areas of the
ocean, far from terrestrial communication networks,
relying heavily on satellite-based systems for connectivity
(Wei et al., 2021). However, satellite communication has
inherent limitations, such as high latency, limited
bandwidth, and susceptibility to signal interference. These
constraints not only slow down data transmission but also
create gaps in coverage, making it difficult to maintain
continuous, secure connections for critical systems like
navigation, cargo management, and monitoring (Yuan et
al., 2017).

This lack of reliable, high-speed communication
infrastructure can hinder the timely application of security
patches and updates, leaving maritime networks
vulnerable to known cyber threats. Moreover, the limited
bandwidth available through satellite connections makes it
challenging to implement advanced encryption and
security protocols, as these often require significant
processing power and data throughput (Mrakovi¢ &
Vojinovi¢ 2019). The resulting security gaps make ships
and offshore installations prime targets for cyberattacks, as
attackers can exploit these weak points to intercept or
manipulate data.

The illustrations in figure 5 show an overview of
communication arrangement (vessel-to shore
communication) intended to allow offshore vessels to
access real time data and at the same time send and receive
critical updates when in coastal environment.

ATLAS TECHNOLOGIES . P
; Marine Communication System
sofetycseo | CORPORATION

“Marine communication over-view"

Fig 5 An Overview of Communication System in the Maritime Environment
Source: Ibokette et al., (2024). Optimizing maritime communication networks with virtualization, containerization and loT
to address scalability and real — time data processing challenges in vessel — to —shore communication.
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» Latency and Data Transmission Delays

High latency in satellite communications poses a
serious challenge to secure maritime communications.
Due to the long distance between vessels and satellites,
real-time data transmission is often delayed, impacting the
ability to monitor and respond to cyber threats in a timely
manner (Alqurashi et al., 2022). This delay also affects
critical functions, such as navigation updates, system
diagnostics, and communications with shore-based
support teams. For instance, in the event of a cyberattack,
the latency in detecting, reporting, and responding to
security breaches can lead to prolonged exposure to
threats, increasing the potential damage to operational
systems.

Latency also complicates the implementation of real-
time encryption and decryption processes, which are
necessary to secure sensitive data in transit. Advanced
encryption protocols, while crucial for preventing
unauthorized access, require high processing speeds and

low-latency communication to function effectively. In
high-latency environments, such as those dependent on
satellite communication, the encryption process can
experience delays, leaving data transmissions exposed to
interception or tampering during transit (Wei et al., 2021).

When a packet is completed, the network device
activates an interrupt to inform the system of the event.
The real-time process (RT task) that handles this event
must be scheduled, processed, and then respond, leading
to processing delays after the packet reaches the real-time
system control device as shown in figure 6. Two main
sources of delay can be identified in this process. Interrupt
latency occurs when the system is unable to immediately
handle the interrupt due to other operations, including
saving the processor's state and processing the interrupt
itself. Dispatch latency happens after the interrupt is
handled, when the RT task is ready to run but experiences
delay due to context switching, scheduling, and other
conflicts during the dispatch process (Queiroz et al., 2023).

EVENT APPLICATION RESPONSE TIME RESPONSE
DETECTION TO EVENT
l |
| TASK READY TASK |
| TO RUN EXECUTING | e
| | | | |
| | | |
| INTERRUPT | DISPATCH | | ,
| LATENCY | LATENCY I | |
| | | |
| | | |
tim

Fig 6 Processing Latency
Source: Queiroz, R, et al., (2023): Container-Based Virtualization for Real-Time Industrial System — A Systematic Review.

» Vulnerability to Signal Jamming and Interference
Another  significant challenge in  maritime
communications is the vulnerability to signal jamming and
interference. Given the reliance on satellite and radio
frequency (RF) communications, ships are susceptible to
deliberate jamming attacks or environmental interference
that can disrupt or block communication signals. Signal
jamming can prevent the transmission of vital information,
such as navigation coordinates or distress signals,
compromising both safety and security (Androjna &
Perkovi¢, 2021). Additionally, natural phenomena, such as
solar flares or electromagnetic interference, can further
degrade the quality of satellite communications, making
secure, continuous connectivity difficult to maintain.

These disruptions can be especially dangerous in
critical moments, such as during navigation in congested
waters or in response to emergency situations. For
example, an attacker could jam the GPS signals used by a
vessel, causing it to veer off course without the crew
realizing it. In such cases, the inability to communicate
with shore-based authorities or other vessels due to
jamming or interference can result in severe operational
risks (Bari et al., 2016).

» Cybersecurity Threats to Communication Systems

The maritime industry is increasingly targeted by
cyberattacks aimed at compromising communication
systems. Hackers may attempt to intercept, alter, or block
data transmissions to gain control of a ship’s systems or
steal sensitive information. Without strong encryption and
authentication measures in place, cybercriminals can
exploit communication vulnerabilities to conduct man-in-
the-middle attacks, where they insert themselves into the
communication stream between ships and shore-based
control centres (Mrakovi¢ & Vojinovi¢ 2019). This can
lead to unauthorized access to critical systems, such as
navigation, engine control, or cargo management.

The challenge is further compounded by the use of
legacy communication systems in many maritime
operations. These systems may not have been designed
with modern cybersecurity needs in mind and often lack
the necessary protections against cyber threats. As
maritime organizations transition to more digital and
automated systems, the need to upgrade legacy
communication infrastructures become paramount to
ensure that communications remain secure and resilient in
the face of evolving cyber threats (Nawaz et al., 2024).
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1. AI-BASED INTRUSION DETECTION
SYSTEMS (IDS)

A. Overview of Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) are a critical
component of cybersecurity infrastructure, designed to
monitor network traffic and detect suspicious activities or
policy violations that may indicate a security breach. An
IDS acts as an early warning system by analyzing data for
signs of malicious activities, such as unauthorized access,
abnormal patterns, or system vulnerabilities, and alerting
security administrators to take preventive actions (Patel et
al., 2013).

IDS are generally classified into two broad
categories: Network-based IDS (NIDS), which monitor
network traffic, and Host-based IDS (HIDS), which
monitor activity on individual devices or systems. Both
play crucial roles in detecting cyber threats across different
layers of an organization’s IT environment, providing
defense against a wide range of potential attacks, including
malware, denial-of-service (DoS), and insider threats
(Asharf et al., 2020).

» Network-Based Intrusion Detection Systems (NIDS)
NIDS monitor the entire network for malicious
activities by analyzing packets that travel through the

network. These systems are usually placed at strategic
points, such as network gateways or critical junctions
within an organization's infrastructure, to inspect incoming
and outgoing traffic in real-time. By using predefined rules
or behavioral analysis, NIDS can detect unusual patterns
that may indicate an attack, such as unauthorized data
exfiltration, DDoS attacks, or port scanning (Deshpande et
al., 2018).

One of the key advantages of NIDS is that it allows
for the monitoring of multiple devices simultaneously,
making it scalable for large organizations, including those
in the maritime industry where communication networks
extend across fleets and offshore installations. However, a
limitation of NIDS is that encrypted traffic is challenging
to analyze, which can hinder its ability to detect threats
within secure communications (Patel et al., 2013).

As shown in Figure 7 this model is divided into two
components: a sensor, which gathers data from an
information source, and a detector, which handles the
analysis. The system is comprised of multiple sensors and
detectors. In practical applications, it collects data from
various sources, which are then processed by a central
detector. The detector is designed to identify known
intrusions, learn new intrusion patterns, and respond to
events as they occur, triggering an alarm when necessary
(Sodiya et al., 2014).
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Fig 7 Artificial Neural Network Based IDS Model.
Source: Sodiya et al., (2014). Neural network-based intrusion detection systems.

» Host-Based Intrusion Detection Systems (HIDS)

HIDS focus on monitoring individual systems or
hosts for suspicious activities by analyzing system logs,
file integrity, and application behavior. These systems are
especially useful in identifying threats that have bypassed
network defenses, such as malware infections or
unauthorized file modifications (Scarfone & Mell, 2010).
In the maritime sector, HIDS can be deployed on
shipboard systems, ensuring that critical systems like
navigation and engine control are continuously monitored
for unauthorized access.

HIDS are highly effective in detecting insider threats
and sophisticated malware attacks that target specific
hosts. However, they require substantial resources for
deployment and maintenance, as each host must be
equipped with its own IDS system, which can lead to
challenges in scaling for large or distributed operations
(Deshpande et al., 2018).

A Host-based Intrusion Detection and Prevention
System (HIDPS) monitors various types of host events and
activities to identify malicious code and intrusion attempts
on host systems, including desktops, mail servers, DNS
servers, web servers, and database servers. When HIDPS
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detects malicious code or abnormal behaviors, such as
buffer overflow or unauthorized file system access, it
prevents their execution. HIDPS gathers information from
host systems, including file system usage, network events,
and system calls, to detect intrusions (Letou et al., 2013).
The proposed HIDPS model is illustrated in Figure 8, and
its components include Data Pre-processing, Feature
Extraction, Feature Selection, Misuse Detection Engine,
Anomaly Detection Engine, Knowledge-based Database,

Behavior-based Database, Countermeasure, Launch

Action, and System Administrator.

e Data Pre-processing: Data is filtered and segmented
for analysis.

e [Feature Extraction: Network packets are decomposed
to extract relevant features.

e Feature Selection: Feature vectors are selected to be
used as inputs for machine learning algorithms.
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Fig 8 Proposed Host-based Intrusion Detection and Prevention System Model
Source: Letou et al. (2013). Host-based intrusion detection and prevention system (HIDPS). International Journal of
Computer Applications, 69(26), 28-33.

e Misuse Detection Engine: This engine processes input
data, searching for known attack signatures, events,
and alerts based on past attacks.

e Anomaly Detection Engine: This engine processes
input data by comparing it against a user-defined
profile of normal behavior, identifying any deviations
or abnormal system activities.

e Knowledge-based Database: Stores records of
previously known attacks, events, and alerts, which the
Misuse Detection Engine utilizes.

e Behavior-based Database: Stores profiles of normal
behavior, events, and alerts, required by the Anomaly
Detection Engine.
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e Countermeasure: Reacts to detected attacks by
blocking and preventing them from causing further
damage.

e Launch Action: Displays warnings, generates reports
on system events, and tracks the activities of potential
attackers or intruders.

e System Administrator: The administrator takes
appropriate action based on the warnings displayed,
reports generated, and intruder activity tracking.

B. Signature-Based vs. Anomaly-Based Detection

Intrusion detection systems employ different
methodologies for identifying potential threats, the most
common being signature-based detection and anomaly-
based detection.

> Signature-Based Detection:

This approach relies on a predefined database of
known attack patterns or signatures. When an incoming
traffic pattern matches one of these signatures, the IDS
generates an alert. While signature-based detection is
highly effective in identifying known threats, it struggles
to detect new or unknown attacks (Patel et al., 2013). In
dynamic environments like maritime networks, where new
threats can emerge rapidly, this approach has limitations in
providing comprehensive security.

» Anomaly-Based Detection:

Anomaly detection focuses on identifying deviations
from normal network behavior. This is particularly useful
in environments with unpredictable traffic patterns, such
as maritime networks, where ships and ports may have
varying communication loads depending on operational
conditions (ljiga et al 2024). Anomaly-based systems can
detect novel attacks by flagging unusual behavior, though
they can also generate a higher rate of false positives,
which requires careful tuning to avoid alert fatigue.

C. Role of IDS in the Maritime Industry

In the maritime sector, where operations depend on
interconnected networks, intrusion detection systems are
essential for defending against cyber threats. Given the
increasing reliance on automated and digital technologies
for navigation, cargo handling, and communications,
maritime vessels and ports face growing exposure to
cyber-attacks (Mrakovi¢ & Vojinovi¢ 2019). IDS can
provide a first line of defense by continuously monitoring
networks for threats, thereby reducing the risk of cyber
incidents that could jeopardize the safety and security of
maritime operations.

Furthermore, the maritime industry's geographically
dispersed nature, with vessels and offshore platforms
operating in isolated areas, increases the importance of
IDS as a mechanism to ensure secure communication and
timely detection of threats. IDS solutions tailored to the
maritime environment, such as those equipped with
anomaly-based detection, can enhance the sector’s
resilience to cyber threats, especially in scenarios where
connectivity is intermittent and satellite communications
are used (Alqurashi et al., 2022).

Despite their benefits, deploying IDS in maritime
operations comes with challenges. These include the need
to manage high volumes of network traffic, ensure
compatibility with legacy systems, and cope with high-
latency satellite communications (Wei et al., 2021).
Additionally, IDS must be capable of operating in harsh
environmental conditions where system reliability can be
affected by factors such as extreme weather, geographical
isolation, and limited bandwidth (Yuan et al., 2017).

D. Key Metrics for Evaluating IDS Performance

The effectiveness of Intrusion Detection Systems
(IDS) can be assessed through various performance
metrics, which provide insights into their operational
efficiency, detection capabilities, and overall security
contributions. Understanding these metrics is essential for
evaluating and comparing different IDS implementations,
particularly as cyber threats evolve.

Key metrics for evaluating IDS performance include
detection rate, false positive rate, false negative rate,
precision and recall.

> Detection Rate (True Positive Rate)

The detection rate, also known as the true positive
rate, measures the proportion of actual attacks that the IDS
successfully identifies. It is calculated as follows:

Detection Rate = True Positives (TP)

True Positives (TP)+False Negatives (FN)

A high detection rate indicates that the IDS is
effective in identifying genuine threats. This metric is
crucial for organizations, especially in critical sectors like
maritime operations, where undetected threats can lead to
severe consequences (Almaiah et al, 2022).

» False Positive Rate

The false positive rate measures the proportion of
benign activities incorrectly classified as attacks. It is
calculated as:

False Positive Rate = False Positives (FP)
Fulse Positives (FP)+True Negatives (IN)

A high false positive rate can lead to alert fatigue
among security personnel, making it challenging to focus
on genuine threats (Wei et al.,, 2021). Therefore, an
effective IDS should aim to minimize false positives while
maintaining a high detection rate.

> False Negative Rate

The false negative rate measures the proportion of
actual attacks that the IDS fails to detect. It is calculated
as:

False Negative Rate = False Negatives (FN)
False Negatives (EN)+True Positives (TP)
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A high false negative rate indicates that the IDS is
missing a significant number of threats, which can have
dire implications for an organization's security posture
(Saranya et al., 2020). It is essential for organizations to
balance the trade-off between false negatives and false
positives to ensure comprehensive threat detection.

» Precision

Precision, also known as positive predictive value,
measures the accuracy of the IDS in identifying true
threats among all the alerts generated. It is calculated as
follows:

Precision = True Positives (TP)

True Positives (TP)+False Positives (FP)

High precision indicates that the IDS generates fewer
false alerts, enhancing the credibility of the alerts that are
issued (Georgescu, 2020, Hodge & Austin, 2004). This is
particularly important in operational environments, such
as maritime systems, where timely and accurate responses
to alerts are critical.

» Recall (Sensitivity)

Recall, or sensitivity, measures the proportion of
actual attacks that the IDS successfully identifies. It is
synonymous with the detection rate, but it emphasizes the
importance of recognizing true attacks within the overall
context of the IDS's performance. Recall is calculated as:

Recall = True Positives (TP)

True Positives (TP)+False Negatives (FN)

A high recall value indicates that the IDS is effective
at capturing most attacks, thus preventing potential
breaches and damages (Almaiah et al, 2022, Georgescu, T.
M. 2020).

E. Al Techniques in Intrusion Detection

The increasing sophistication and frequency of
cyberattacks necessitate the development of advanced
Intrusion Detection Systems (IDS) capable of identifying
and mitigating threats in real-time. Artificial Intelligence
(Al) techniques have emerged as vital tools in enhancing
the effectiveness of IDS by enabling the automation of
threat detection processes, improving accuracy, and
reducing false positive rates.

An Intrusion Detection System (IDS) is a security
mechanism that continuously monitors the activities of a
computer system or network to detect potential security
breaches and notify the user. Figure 9 presents the
components of a typical IDS. The IDS functions in three
phases: data collection, detection, and response. During
the data collection phase, events are generated from log
data, which are derived from the target system. These data
sources can include network traffic, operating system logs,
and device logs.

In the detection phase, the analysis engine employs
detection algorithms, using scripts to match text patterns
associated with specific intrusions. This phase aims to
distinguish between normal and abnormal behaviors
within the target system. The final phase, the response
stage, processes the information about events classified as
normal or abnormal and determines the appropriate action,
such as alerting the system administrator, automatically
reconfiguring the system to block the intruder, or offering
response mechanisms for manual intervention.
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Fig 9 The Components of a General IDS.
Source: Almaiah et al., (2022). Performance investigation of principal component analysis for intrusion detection system
using different support vector machine kernels.
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This section discusses three Al techniques employed
in intrusion detection, specifically machine learning, deep
learning, and natural language processing.

» Machine Learning Approaches

Machine learning (ML) is a subset of Al that involves
training algorithms to recognize patterns in data. In the
context of intrusion detection, ML algorithms can learn
from historical data to identify normal behavior and detect
anomalies that may indicate malicious activities. Common
ML techniques used in IDS include supervised learning,
unsupervised learning, and semi-supervised learning.

e Supervised Learning:

In supervised learning, models are trained on labeled
datasets, where each data point is associated with a known
outcome (i.e., normal or malicious). Techniques such as
Support Vector Machines (SVM), Decision Trees, and
Random Forests are frequently used. These models excel
in detecting known threats but may struggle with novel
attacks not represented in the training data (Saranya et al.,
2020).

e Unsupervised Learning:

Unsupervised learning approaches do not rely on
labeled datasets, making them particularly useful for
identifying previously unknown attacks. Clustering
algorithms, such as K-Means and DBSCAN, can group
similar data points together, helping to reveal unusual
patterns or outliers that may indicate an intrusion (Adu-
Twum et al., 2024). This approach is especially beneficial

in dynamic environments, such as maritime networks,
where new types of attacks frequently emerge.

e Semi-Supervised Learning:

Combining aspects of supervised and unsupervised
learning, semi-supervised learning uses a small amount of
labeled data along with a larger set of unlabeled data. This
technique can significantly enhance detection performance
when labeled examples are scarce, which is often the case
in cybersecurity applications (Asharf et al., 2020).

Most Intrusion Detection Systems (IDS) follow a
standard structure that consists of: (1) a data collection
module that gathers data potentially containing evidence
of an attack, (2) an analysis module that identifies attacks
by processing the data, and (3) a reporting mechanism for
alerting about the attack. In the data collection module,
input data from various parts of 10T systems are collected
and analyzed to establish patterns of normal behavior,
enabling the detection of malicious activities at an early
stage. The analysis module can utilize different
techniques, but machine learning (ML) and deep learning
(DL) approaches are particularly effective and widely
used. These methods are capable of learning both normal
and abnormal behaviors based on interactions between loT
devices and systems. Moreover, ML/DL techniques can
anticipate new types of attacks, even those that differ from
previously encountered ones, by learning from existing
legitimate samples to predict future, unknown threats.
Figure 10 illustrates the components of a typical IDS
utilizing ML/DL methods.

Attack
ML/ DL Detection
Techniques
IoT Systems Attack
and Threats Prediction
B &= P =
Normal
Traffic

Figl0 Role of Machine Learning/Deep Learning (ML/DL) Based IDS for 10T system.
Source: Asharf, J., et al (2020). A review of intrusion detection systems using machine and deep learning in internet of
things: Challenges, solutions and future directions.

» Deep Learning Techniques

Deep learning, a more advanced subset of machine
learning, utilizes neural networks with multiple layers to
model complex patterns in data. Deep learning techniques
have shown promise in improving intrusion detection
capabilities due to their ability to handle vast amounts of
data and automatically extract relevant features (Almaiah
et al, 2022).

e Convolutional Neural Networks (CNNs):
CNNs are particularly effective in analyzing
structured data, such as network traffic and logs. They can

learn spatial hierarchies of features, making them suitable
for detecting sophisticated attack patterns that might be
missed by traditional methods (Oyebaniji et al., 2024).

e Recurrent Neural Networks (RNNs):

RNNSs, including Long Short-Term Memory (LSTM)
networks, excel at processing sequential data. In the
context of IDS, they can analyze time-series data from
network traffic to identify trends and patterns indicative of
attacks, making them particularly effective for detecting
ongoing attacks (Pitropakis et al., 2020).
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» Natural Language Processing (NLP)

Natural Language Processing (NLP) techniques are
increasingly being applied to intrusion detection systems,
particularly for analyzing logs and textual data generated
by network devices. NLP can help convert unstructured
log data into structured information, enabling more
effective analysis (Georgescu, 2020).

e Text Classification:

Using techniques like bag-of-words and word
embeddings, NLP models can classify logs based on their
content, identifying abnormal entries that may signify
security incidents (Chen et al., 2021). By automating the
analysis of large volumes of log data, organizations can
enhance their ability to detect and respond to incidents in
real time.

e Sentiment Analysis:

Although primarily used in social media and
customer feedback analysis, sentiment analysis techniques
can also be adapted for cybersecurity applications. By
analyzing the tone and context of communication within a
network, systems can identify potential insider threats or
compromised accounts (Chen et al., 2021).

F. Applications of Al-Based IDS in Maritime

As maritime operations increasingly adopt digital
technologies, the integration of Intrusion Detection
Systems (IDS) has become crucial for safeguarding
maritime networks against cyber threats. This section
examines current implementations of IDS in the maritime
industry and presents relevant case studies that illustrate
their effectiveness in real-world scenarios.

» Implementations of IDS in Maritime Operations

The maritime industry is adopting a variety of IDS
solutions tailored to meet the unique challenges posed by
maritime environments. Key implementations include:

¢ Network-Based Intrusion Detection Systems (NIDS):

NIDS monitor network traffic for suspicious
activities and are widely used in maritime operations. For
example, the Royal Navy has adopted NIDS to secure
communications between ships and shore-based facilities.
By analyzing network packets in real time, the system can
detect unauthorized access attempts and potential malware
(Ali et al., 2020).

e Host-Based Intrusion Detection Systems (HIDS):

HIDS operate on individual hosts or devices,
monitoring system calls, file modifications, and
application logs. The shipping company Maersk
implemented HIDS across its fleet to enhance endpoint
security, ensuring that each vessel's onboard systems are
protected from internal and external threats (Mishra et al.,
2024).

e Anomaly Detection Systems:

Many maritime organizations are utilizing anomaly
detection techniques that uses machine learning to identify
deviations from normal operational patterns. For instance,
a case study involving the Port of Rotterdam demonstrated
the application of an anomaly detection model to monitor

shipping data and flag unusual behavior that could indicate
cyber intrusions (Jovi¢ et al., 2019).

G. Case Studies of IDS in Maritime Cybersecurity

» Case Study: Maersk's Cybersecurity Strategy

Following the NotPetya ransomware attack in 2017,
Maersk recognized the critical need to enhance its
cybersecurity posture. The company implemented a
comprehensive IDS solution that combined NIDS and
HIDS across its global operations. This multi-layered
approach enabled real-time threat detection and improved
response times to security incidents. Maersk's investment
in advanced IDS technologies not only helped in
mitigating the impact of future attacks but also ensured
compliance with international cybersecurity regulations,
such as the International Maritime Organization (IMO)
guidelines (Mishra et al., 2024).

» Case Study: The Port of Rotterdam

The Port of Rotterdam, one of the busiest ports in the
world, has adopted advanced cybersecurity measures,
including IDS, to protect its critical infrastructure. The port
implemented a hybrid IDS that utilizes both signature-
based and anomaly-based detection methods. By
continuously analyzing traffic patterns and user behavior,
the system can identify potential cyber threats before they
cause significant disruptions. This proactive approach has
proven effective in safeguarding the port's operations
against emerging cyber threats (Jovi¢ et al., 2019).

» Case Study: Royal Caribbean International

Royal Caribbean International has integrated IDS
within its operational technology (OT) environment to
secure its fleet against cyber threats. By employing both
HIDS and NIDS, the company monitors communications
and interactions between shipboard systems and external
networks. This implementation has been crucial in
identifying unauthorized access attempts and ensuring the
integrity of critical onboard systems. The case highlights
the importance of IDS in the cruise industry, where
maintaining secure and reliable operations is essential for
passenger safety and business continuity (Ali et al., 2020).

H. How Al-Driven Intrusion Detection Systems Can Adapt
to Extreme Environmental Conditions

Artificial Intelligence (Al) has emerged as a powerful
tool for enhancing Intrusion Detection Systems (IDS),
particularly in environments subject to extreme conditions,
such as maritime operations. The application of Al in IDS
enables systems to adapt dynamically to various
challenges, improving their effectiveness in detecting and
mitigating cyber threats. This section provides analyses on
how Al-driven IDS can adapt to extreme environmental
conditions, focusing on their capabilities to analyze data,
learn from patterns, and respond to specific threats.

> Real-Time Data Processing and Anomaly Detection
Al-driven IDS can process vast amounts of data in
real-time, allowing them to identify unusual patterns and
behaviors that may signify potential threats. In maritime
environments, where operational conditions can be
unpredictable due to factors such as weather and
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geographical isolation, the ability to quickly analyze
incoming data streams is critical. Machine learning
algorithms can continuously learn from new data,
improving their accuracy over time (Almaiah et al, 2022).
For instance, a study by Kim et al. (2021) demonstrated
that an Al-based IDS could successfully identify
anomalies in network traffic during extreme weather
conditions, allowing for timely interventions and reduced
risk of cyber incidents.

» Adaptive Learning and Continuous Improvement

One of the significant advantages of Al-driven IDS is
their ability to learn and adapt to new threats. Through
techniques such as reinforcement learning, these systems
can modify their detection strategies based on the evolving
nature of cyber threats. In maritime settings, where
environmental conditions can drastically impact network
performance and system behavior, Al-driven IDS can
adjust their algorithms to accommodate these variations.
For example, an Al-based system may recognize that
certain communication patterns are more prevalent during
storms and adjust its detection criteria accordingly, thus
minimizing false positives and ensuring relevant alerts
(Elsayed et al., 2022).

» Contextual Awareness and Environmental Adaptation

Al-driven IDS can be designed to incorporate
contextual awareness, allowing them to consider
environmental factors when assessing network security.
This capability is particularly important in maritime
environments, where factors like geographical location,
vessel type, and operational status can influence
vulnerability to cyber threats. By utilizing contextual data,
Al systems can enhance their detection capabilities and
provide tailored security responses (Ghaleb et al., 2022).
For instance, a case study by Ali et al. (2020) illustrated
that an Al-driven IDS employed in a maritime operation
could adjust its alert thresholds based on the vessel's
operational state and environmental conditions, improving
the accuracy and relevance of security alerts.

» Resilience to Environmental Disruptions

Extreme environmental conditions, such as severe
weather events or physical obstructions, can disrupt
communication and data transmission in maritime settings.
Al-driven IDS can enhance resilience by employing
decentralized architectures and edge computing strategies.
These approaches enable data processing and analysis to
occur closer to the source of data, minimizing the impact
of connectivity issues (Ashraf et al., 2020). For example, a
maritime operation utilizing edge computing with Al-
driven IDS demonstrated improved performance in
detecting anomalies during adverse weather conditions,
ensuring continuous monitoring and rapid threat response.

V. NETWORK AUTOMATION IN
MARITIME CYBERSECURITY

A. Role of Network Automation

The maritime industry is increasingly embracing
automation to enhance the efficiency and security of its
networks. As digital technologies and interconnected
systems become more prevalent, automation plays a

critical role in managing maritime operations and
safeguarding sensitive data. This section reveals the
importance of automation in managing maritime networks
and securing data, highlighting the benefits, challenges,
and recent advancements in this field.

» Enhancing Operational Efficiency

Automation in  maritime networks enables
organizations to streamline operations and optimize
resource allocation. Automated systems can monitor
network performance, detect anomalies, and facilitate
rapid decision-making. For instance, vessel traffic services
(VTS) have integrated automated systems to track and
manage ship movements, ensuring safe navigation and
efficient port operations (Wei et al., 2021). Such
automation not only reduces human error but also
enhances the overall safety and efficiency of maritime
activities.

» Automated Intrusion Detection and Response
Automated Intrusion Detection Systems (IDS) are
essential for identifying and mitigating cyber threats in
maritime networks. By employing machine learning
algorithms, these systems can analyze vast amounts of
network traffic in real time to detect malicious activities.
For example, recent research by Sowmya & Anita, (2023)
demonstrated an automated IDS specifically designed for
maritime operations, capable of identifying unauthorized
access attempts and quickly responding to potential
threats. The automation of threat detection and response
mechanisms reduces the reliance on human intervention,
allowing security teams to focus on more strategic tasks.

» Data Security and Compliance

With the growing reliance on digital technologies,
securing sensitive data in maritime operations has become
paramount. Automation can help enforce security policies
and ensure compliance with regulatory standards.
Automated data encryption, access controls, and
monitoring systems can protect critical information from
unauthorized access and data breaches. A study by Jones
et al (2016) emphasized the effectiveness of automated
data security measures in maritime environments,
highlighting how these systems can enforce compliance
with international regulations, such as the International
Maritime Organization’s (IMO) guidelines.

> Integration of Internet of Things (1oT) Technologies

The integration of 10T devices in maritime operations
presents both opportunities and challenges for data
management and security. Automated systems can
facilitate the secure management of data generated by loT
devices, ensuring that information is collected,
transmitted, and stored securely. For instance, 10T sensors
deployed on wvessels can monitor environmental
conditions, equipment status, and operational metrics. An
automated data management system can analyze this data
in real time, providing insights for optimizing operations
and enhancing safety (Chi et al., 2020).

Cyber-physical systems in the maritime sector
involve the integration of information technology (IT) and
operational technology (OT) systems, along with human
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factor considerations. This integration, illustrated in Figure
11a, defines cyber-physical systems and encompasses
most onboard systems of maritime vessels. Figure 11b
presents a simplified diagram of the communication
pathways between shore-based and vessel-based
stakeholders and IT/OT platforms, highlighting the
interaction between IT and OT systems. Maritime vessels,
managed by human operators, contain an interface
between IT and OT systems that links processes, systems,
components, and both technical and operational
performance. A naval vessel can be seen as a system of
systems, equipped with IT and OT devices. The crew
operates these systems and is responsible for ensuring the
vessel's overall operational and performance integrity.

Similarly, shipping companies maintain an IT interface
that supports vessels technically and operationally, with
human operators using IT systems to achieve performance
and financial objectives that support maritime operations.
Ports interact with vessels on both a shore-to-ship and
ship-to-shore level, handling the loading and unloading of
maritime goods. This process relies on a combination of IT
and OT platforms, such as cargo management systems,
cranes, and utilities. These platforms support maritime
assets technically and operationally, with human operators
managing and configuring the cyber-physical systems.
Maintenance of OT devices and systems is performed
either physically or remotely (Progoulakis, et al., 2021).
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Departments Officers, Shipping company support
fOffice personel, Technical Superintedents, Port
operators, Service providers

Fig 11a IT, OT, and human element interface in cyber physical systems.
Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and
Engineering, 9(12), 1384.
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Fig 11b Communication paths of shore-based and vessel-based stakeholders and IT/OT platforms.
Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and
Engineering, 9(12), 1384.

B. Autonomous Decision-Making for Responding to
Cyber Threats
As the maritime industry becomes increasingly
reliant on digital technologies, the potential for cyber
threats has escalated significantly. Autonomous decision-
making systems are emerging as critical tools for

responding to these threats, enabling organizations to react
swiftly and effectively to cybersecurity incidents. This
section exposes the concept of autonomous decision-

making in the context of cyber threat response,
highlighting its importance, methodologies, and
challenges.
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» The Need for Autonomous Decision-Making

Cyber threats in maritime environments can arise
from various sources, including malware, phishing, and
Distributed Denial of Service (DDoS) attacks. These
threats can disrupt operations, compromise sensitive data,
and endanger safety (Maddireddy & Maddireddy, 2022).
Traditional response mechanisms often rely on human
intervention, which can introduce delays and increase the
likelihood of errors in high-pressure situations.
Autonomous decision-making systems can mitigate these
issues by providing rapid, data-driven responses to
detected threats, thus enhancing the resilience of maritime
operations (Tinga et al., 2017).

» Methodologies for Autonomous Decision-Making

e Machine Learning and Artificial Intelligence

Machine learning (ML) and artificial intelligence
(Al) techniques are at the forefront of autonomous
decision-making systems. These technologies enable the
analysis of vast amounts of data to identify patterns and
anomalies indicative of cyber threats. For example, an Al-
driven system can continuously monitor network traffic,
learning from previous attacks to improve its detection
capabilities and automate responses (Almaiah et al, 2022).
Research by Tinga et al. (2017) demonstrated that an ML-
based autonomous system could effectively classify cyber
threats in real-time, facilitating immediate
countermeasures without human intervention.

e Rule-Based Systems

In addition to ML and Al, rule-based systems are
commonly employed in autonomous decision-making.
These systems use predefined rules to assess potential
threats and determine appropriate responses. For instance,

a rule-based IDS might automatically isolate a
compromised device from the network to prevent further
spread of an attack (Wei et al., 2021). While less adaptable
than Al-driven systems, rule-based approaches can be
effective in environments where threat scenarios are well-
understood.

» Autonomous Incident Response Strategies
Autonomous decision-making can facilitate several
incident response strategies:

e Automated Threat Containment:

Upon detection of a threat, an autonomous system can
automatically implement containment measures, such as
blocking malicious IP addresses or quarantining affected
systems. This immediate response helps prevent the
escalation of incidents and minimizes damage (Uzoma et
al., 2023).

e Dynamic Risk Assessment:

Autonomous systems can perform real-time risk
assessments based on the current threat landscape and
organizational context. This capability enables them to
prioritize responses and allocate resources more
effectively (Ray et al., 2013).

The APl STD 780 SRA methodology assesses and
allows for the management of security risks through a risk-
based, performance-oriented management process aimed
at the protection and security of assets, people, and the
environment (Progoulakis, et al., 2021). The SRA is a five-
step process involving characterization, threat assessment,
vulnerability assessment, risk evaluation and risk
treatment as shown in Figure 12.

Assessment

Step 4:

Risk Evaluation

Risk treatment -

Ste 9 - e MAnalyze assets and criticality
Characte'oriz-atior\ e Screen assets on conseguence
= ldentify critical assets
Step 2: e Analyze threats and assets
Threat attractiveness
A ssessment e Determine target assels
Step 3: e Conduct scenario analysis
Vulnerability e Determine act-specific

consequences and vulnerability

= Assess risk against security criteria

Step S- e Evaluate security upgrades as
required
Determine residual risk

Fig 12 APl SRA Method of Security Risk Management.
Source: Progoulakis, et al., (2021). Cyber physical systems security for maritime assets. Journal of Marine Science and
Engineering, 9(12), 1384.
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e Incident Recovery and Forensics:

After a cyber incident, autonomous systems can assist
in recovery efforts by restoring affected systems and
analyzing logs for forensic purposes. This process is
essential for understanding the attack and preventing
future incidents (Maddireddy & Maddireddy, 2022).

» Challenges in Autonomous Decision-Making

While the benefits of autonomous decision-making
for responding to cyber threats are evident, several
challenges must be addressed:

e Trust and Transparency:

Organizations must develop trust in autonomous
systems, which can be difficult when the decision-making
process is opaque. Ensuring that stakeholders understand
how decisions are made is critical for fostering confidence
in these systems (Ibokette et al., 2024).

o False Positives and Negatives:

Autonomous systems are not infallible and can
generate false positives or negatives, leading to
unnecessary disruptions or missed threats. Continuous
training and refinement of algorithms are essential to
minimize these occurrences (Almaiah et al, 2022).

o Ethical Considerations:

The use of autonomous systems in cybersecurity
raises ethical questions regarding accountability and
responsibility for decisions made by machines.
Establishing clear guidelines for accountability is crucial
as these technologies become more prevalent (Tinga et al.,
2017).

C. Technologies Enabling Network Automation

Network automation has become a cornerstone of
modern maritime operations, driven by the need for
increased efficiency, enhanced security, and streamlined
management of complex systems. Various technologies
play a pivotal role in enabling network automation,
allowing organizations to automate routine tasks, optimize
network performance, and respond to cybersecurity threats
in real time. This section discusses the key technologies
that facilitate network automation in the maritime industry.

» Software-Defined Networking (SDN)

Software-Defined  Networking (SDN) is a
revolutionary approach that decouples the network control
plane from the data plane, allowing for centralized
management and dynamic configuration of network
resources. SDN enables maritime organizations to
automate network provisioning, monitoring, and
management, significantly improving flexibility and
scalability (Cardona et al.,, 2020). For example, in
maritime contexts, SDN can facilitate the dynamic
allocation of bandwidth to different vessels based on real-
time demands, ensuring optimal utilization of network
resources (Simion et al., 2024).

> Network Functions Virtualization (NFV)

Network Functions Virtualization (NFV)
complements SDN by virtualizing network functions that
traditionally run on dedicated hardware. By deploying

network functions as software applications on standard
hardware, NFV allows maritime organizations to reduce
costs and enhance operational agility (Cardona et al.,
2020). NFV enables the automated deployment of services
such as firewalls, intrusion detection systems, and load
balancers, making it easier to adapt to changing
operational requirements and improve overall network
performance.

> Artificial Intelligence and Machine Learning

Artificial Intelligence (Al) and Machine Learning
(ML) technologies are integral to automating network
management and security. Al algorithms can analyze
network traffic patterns to detect anomalies, identify
potential threats, and optimize performance (lbokette et
al., 2024). For instance, an Al-driven system can automate
incident response by dynamically adjusting security
policies based on real-time threat assessments
(Katterbauer, 2022). Additionally, Al can enhance
predictive analytics, allowing organizations to foresee
network issues and proactively address them before they
escalate into critical incidents.

> Internet of Things (loT)

The Internet of Things (loT) plays a crucial role in
enabling network automation by connecting a myriad of
devices and sensors to maritime networks. 10T devices
generate vast amounts of data, which can be used to
automate various processes, from monitoring equipment
status to tracking environmental conditions. For example,
10T sensors on vessels can provide real-time data on fuel
consumption, enabling automated adjustments to optimize
fuel efficiency (Chi et al., 2020). Furthermore, the
integration of loT with network automation allows for
more responsive and adaptive networks, enhancing
situational awareness and operational efficiency.

» Cloud Computing

Cloud computing provides a flexible and scalable
infrastructure for deploying automated network services.
By using cloud resources, maritime organizations can
automate the deployment and management of applications,
data storage, and analytics tools without the need for
extensive on-premises hardware (Ahmad et al., 2023).
Cloud-based automation solutions can streamline
processes such as software updates, data backups, and
security monitoring, allowing organizations to focus on
their core operations while maintaining a secure and
efficient network environment.

D. Resilience During Extreme Environmental Conditions

Ensuring reliable connectivity and optimal system
performance in harsh maritime environments is critical for
the safety and efficiency of maritime operations. The
unigque challenges posed by extreme weather conditions,
geographical isolation, and the inherent complexities of
maritime systems necessitate the integration of automation
technologies. This section reveals how automation can
enhance connectivity and system performance in these
demanding environments.
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» Challenges of Harsh Maritime Environments
Maritime operations face numerous challenges,
including severe weather, high waves, and extreme
temperatures, which can adversely affect connectivity and
system performance. For instance, strong winds and heavy
rainfall can disrupt satellite communications and degrade
signal quality, leading to potential data loss or latency
(Wei et al., 2021). Additionally, the corrosive nature of
marine environments can impact the physical integrity of
communication systems, further complicating the
maintenance of reliable connectivity (Chi et al., 2020).

» Automation for Network Resilience

Automation plays a vital role in enhancing network
resilience in harsh maritime conditions. Automated
network management systems can continuously monitor
network performance and adaptively allocate resources to
ensure stable connectivity. For example, intelligent traffic
management systems can dynamically adjust bandwidth
allocation based on real-time demands, ensuring that
critical communications remain intact even during adverse
conditions (Sowmya & Anita 2023). Furthermore,
automated failover mechanisms can reroute data traffic
through alternative pathways if primary connections are
compromised, thereby minimizing disruptions (Ghaleb et
al., 2022).

» Predictive Maintenance and Monitoring

Predictive maintenance, enabled by automation and
loT technologies, is crucial for maintaining connectivity
and system performance in harsh environments.
Automated monitoring systems can collect and analyze
data from various sensors deployed throughout maritime
equipment and communication infrastructure. By using
machine learning algorithms, these systems can predict
potential failures and recommend maintenance actions
before issues escalate (Ibokette et al., 2024). For instance,
predictive analytics can identify wear and tear in
communication equipment, allowing timely interventions
that ensure continued operational efficiency (Sowmya &
Anita 2023).

» Adaptive Communication Protocols

Automated systems can also facilitate the use of
adaptive communication protocols that adjust to changing
environmental conditions. For example, software-defined
networking (SDN) can enable the reconfiguration of
communication pathways in response to signal
degradation due to weather impacts. This adaptability
ensures that maritime operations maintain connectivity
even when faced with challenging conditions (Cardona et
al., 2020). By automating these adjustments, organizations
can minimize manual intervention and enhance the
reliability of their communication systems.

> Data Integrity and Security

In harsh maritime environments, ensuring data
integrity and security is paramount. Automated systems
can implement robust cybersecurity measures that protect
data transmitted over potentially vulnerable connections.
For instance, end-to-end encryption and automated
intrusion detection systems can safeguard communications
from interception or tampering, ensuring that critical
information remains secure (Tinga et al., 2017). The
automation of security protocols also enables real-time
threat detection and response, further enhancing the
resilience of maritime networks against cyber threats.

E. Case Studies of Automation in Adverse Maritime
Conditions

Automation in maritime operations has been
increasingly recognized as a critical solution for
overcoming challenges posed by adverse environmental
conditions. This section discusses several case studies that
demonstrate the effective implementation of automation
technologies in enhancing operational resilience, safety,
and efficiency in harsh maritime settings.

» Autonomous Vessels in Extreme Weather Conditions

One prominent case study involves the use of
autonomous vessels for operations in severe weather
conditions. The Yara Birkeland, an autonomous container
ship, is designed to transport goods without a crew, aiming
to reduce emissions and enhance safety (Redseth et al.,
2023). During trials, the vessel operated in rough sea
conditions, utilizing advanced automation technologies for
navigation and obstacle avoidance. The ship's automation
systems continuously monitored environmental data,
allowing it to adjust its course and speed dynamically to
maintain safety and efficiency during storms (Evensen
2020). This case illustrates how automation can enhance
operational safety in extreme maritime environments by
enabling real-time decision-making.

In Figure 13, the Instrument Layer, positioned at the
base, includes navigational sensors such as AIS and
GNSS, which are essential for navigational awareness,
along with internal automation sensors that monitor
parameters like pressure, temperature, torque, and
vibration, as well as actuators that manage the ship's
machinery operations. These sensors and actuators are
grouped by their functions at the Process Layer and
connected to system components within the Integrated
Ship Control Layer, where key ship operations are
conducted. Above the Integrated Ship Control Layer is the
General Ship Layer, where additional administrative
functions like reporting and record-keeping are carried out.
At the top of the architecture is the Off Ship Layer, which
facilitates communication with external entities (Cho et
al., 2022).

83



Off ship VPN ownesrs
systems o
Open Internet Owners and other parties’ offices
f Crew/Passenger safety Reporing Maintenance
Internet Management applications
General | | | I
Ship FW/GW VPN
Layer Accommodation I Administrative
Energy Performance ISC database
Integrated management monitoring and access
Ship Control I I I
(ISC) Layer
Process
Layer | Other | | Navigation [ Automation |
RADAR Chart Engine 1 Engine 2
Instrument | | Bridge Engine1 | | Engine 2
Lyt | I I I I I I
Gyro GPS AlS GPS Sensor Actuator Sensor Actuator

Fig 13 Architectural Overview f Unmanned Ships
Source: Cho, S., et al., (2022). Cybersecurity Considerations in Autonomous Ships.

» Automated Monitoring Systems for Offshore Platforms

Another case study is the implementation of
automated monitoring systems on offshore oil platforms,
where harsh weather conditions and corrosive
environments pose significant operational challenges. The
Equinor-operated Johan Sverdrup field in the North Sea
employs automated monitoring technologies that utilize
IoT sensors to collect real-time data on equipment
performance and environmental conditions (Ibokette et al.,
2024). These systems automate data analysis and anomaly
detection, enabling proactive maintenance actions and
reducing the risk of operational failures during severe
weather events. The automated systems have improved
safety and efficiency by facilitating remote monitoring and
reducing the need for personnel to operate in hazardous
conditions.

» Predictive Maintenance in Fishing Vessels

The fishing industry is another area where automation
has proven beneficial in adverse conditions. The case of
the commercial fishing vessel Ocean Harvest illustrates
the implementation of predictive maintenance solutions to
ensure equipment reliability during harsh weather. The
vessel utilizes an automated monitoring system that
collects data on engine performance, temperature, and
vibration levels (Ibokette et al., 2024). By applying
machine learning algorithms, the system predicts potential
failures and schedules maintenance before critical
breakdowns occur. This approach has allowed the vessel
to maintain operational readiness and reduce downtime,
even in adverse weather conditions, thereby enhancing
overall fishing efficiency.

> Automated Traffic Management Systems

The Port of Rotterdam has implemented an
automated traffic management system to optimize
maritime traffic flow in adverse weather conditions. The
system uses real-time data from various sources, including
weather forecasts, vessel traffic information, and port

infrastructure conditions, to automate decision-making
processes (Marks et al., 2013). During storms or foggy
conditions, the automated system can reroute vessels and
adjust schedules to minimize risks and delays. This
automation not only improves safety by preventing
collisions but also enhances operational efficiency by
optimizing berth utilization and reducing turnaround times
for vessels.

» Remote-Controlled Drones for Search and Rescue
Operations

In maritime search and rescue operations, automation
technologies have demonstrated their effectiveness in
adverse conditions. The use of remote-controlled drones
has been explored in various case studies, including
operations conducted by the Norwegian Coast Guard.
Drones equipped with advanced sensors and imaging
technologies are deployed to survey large areas of ocean
during search missions, even in challenging weather
(Pani¢ et al., 2021). The drones can relay real-time data to
command centres, facilitating faster decision-making and
more efficient search patterns. This automation enhances
the Coast Guard's ability to respond to emergencies in
harsh maritime environments while minimizing the risk to
personnel.

V. CHALLENGES AND LIMITATIONS

A. Technical Challenges in Maritime Cybersecurity and
Automation

The integration of automation and cybersecurity
solutions in maritime operations presents a myriad of
technical challenges. These challenges arise from the
unique characteristics of maritime environments, the
complexity of maritime systems, and the ever-evolving
landscape of cyber threats. This section reveals some of
the key technical challenges that maritime organizations
face when implementing automated systems and

cybersecurity measures.
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» Legacy Systems Integration

One of the significant technical challenges in
maritime operations is the integration of new automation
and cybersecurity technologies with legacy systems. Many
vessels and maritime infrastructure still rely on outdated
technologies that were not designed with modern
cybersecurity threats in mind (Ibokette et al., 2024).
Integrating automated solutions with these legacy systems
often requires significant customization, which can lead to
increased costs and extended implementation timelines
(Progoulakis et al., 2021). Moreover, the lack of
interoperability between legacy and modern systems can
create vulnerabilities, making it difficult to ensure a
seamless and secure operational environment.

» Data Management and Analytics

The maritime industry generates vast amounts of data
from various sources, including sensors, navigation
systems, and environmental monitoring tools. Effectively
managing and analyzing this data presents a significant
technical challenge (ldoko et al., 2024). Automated
systems require robust data management frameworks to
ensure data integrity, accuracy, and accessibility.
Moreover, the analysis of large datasets often necessitates
advanced machine learning and artificial intelligence
algorithms, which can be complex to implement and
optimize for specific maritime applications (ljiga et al.,
2024). The challenge lies not only in processing this data
in real-time but also in deriving actionable insights that
enhance decision-making.

» Cybersecurity Threat Landscape

The maritime sector faces a diverse range of
cybersecurity threats, including malware attacks, phishing
attempts, and denial-of-service (DoS) attacks (Mishra et
al., 2024). These threats are continually evolving,
necessitating the implementation of advanced intrusion
detection systems (IDS) and automated response
mechanisms. However, developing effective IDS that can
operate in the complex and dynamic maritime
environment is a significant technical challenge (Al Ali et
al., 2021). For instance, the high volume of legitimate data
traffic can lead to false positives, where benign activities
are incorrectly flagged as threats. Balancing sensitivity and
specificity in IDS is crucial for ensuring operational
continuity while maintaining security.

» Limited Connectivity and Redundancy

Maritime operations often take place in remote and
isolated areas where connectivity can be limited or
unreliable. This poses challenges for the deployment of
automated systems that rely on constant data exchange and
communication (Chi et al., 2020). In cases of limited
connectivity, automated systems may struggle to receive
updates or operate effectively, increasing the risk of
operational failures. Furthermore, ensuring redundancy in
communication pathways to maintain connectivity during
adverse conditions is a technical challenge that requires
careful planning and investment in infrastructure (Wei et
al., 2021).

» Environmental Factors

Harsh environmental conditions, such as extreme
weather, high salinity, and temperature fluctuations, can
adversely affect the performance of automated systems
and communication equipment. Corrosion, signal
degradation, and equipment failure are common issues
faced in maritime environments (Sowmya & Anita 2023).
Designing automation solutions that are resilient to these
factors requires extensive testing and validation under
various  environmental  conditions.  Additionally,
maintaining the reliability of sensor systems and
communication links in such settings adds to the
complexity of system design and implementation (Ibokette
etal., 2024).

» Regulatory Compliance

Compliance with maritime regulations and standards
presents another technical challenge. Various international
and national regulations govern cybersecurity practices in
maritime operations, including the International Maritime
Organization (IMO) guidelines and the General Data
Protection Regulation (GDPR) (Mishra et al., 2024).
Ensuring that automated systems meet these regulatory
requirements  often  involves intricate  technical
considerations, such as data protection measures and
reporting protocols. Organizations must also stay updated
with evolving regulations, which can necessitate frequent
adjustments to their cybersecurity frameworks and
automation systems.

B. Operational Challenges in Maritime Cybersecurity
and Automation

The maritime industry is undergoing a significant
transformation with the integration of automation and
cybersecurity technologies. However, several operational
challenges impede the successful implementation and
utilization of these innovations. This section outlines key
operational challenges faced by maritime organizations in
their efforts to enhance cybersecurity and automation.

» Skilled Workforce Shortage

One of the foremost operational challenges in the
maritime sector is the shortage of skilled personnel capable
of managing and maintaining advanced automated systems
and cybersecurity measures. Many maritime organizations
struggle to find employees with the requisite knowledge in
cybersecurity, data analysis, and automation technologies
(Dasgupta et al., 2022). This skills gap can hinder the
effective deployment and operation of automated systems,
as well-trained personnel are essential for monitoring,
troubleshooting, and ensuring compliance  with
cybersecurity protocols (Fruth & Teuteberg, 2017). The
ongoing technological advancements further exacerbate
this challenge, as existing workforce training programs
may not keep pace with emerging technologies.

> Integration of Systems and Processes

Integrating new automated systems with existing
maritime operations and processes poses a considerable
operational challenge. Many maritime organizations rely
on a diverse array of legacy systems and technologies that
were not designed to work together seamlessly
(Progoulakis et al., 2021). Ensuring compatibility between
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these systems and new automation solutions can lead to
complications and increased operational  risks.
Additionally, the integration process often necessitates
extensive testing and validation to ensure that all
components function correctly together, which can be
time-consuming and resource-intensive (Wei et al., 2023).

» Cybersecurity Threats and Incident Response

The dynamic nature of cybersecurity threats presents
a significant operational challenge for maritime
organizations. Cyberattacks are becoming increasingly
sophisticated, and the maritime sector is a prime target due
to its reliance on interconnected systems (Chi et al., 2020).
Organizations must  implement  comprehensive
cybersecurity frameworks and incident response plans to
mitigate risks effectively.

However, the rapid evolution of cyber threats makes
it challenging to keep security measures up to date (Al Ali
et al.,, 2021). Additionally, incident response requires
coordination among various stakeholders, which can
complicate the process and lead to delays in addressing
security breaches.

» Operational Downtime and Recovery

Operational downtime caused by cybersecurity
incidents or failures in automated systems can
significantly impact maritime operations. Unplanned
outages can lead to financial losses, disruptions in supply
chains, and reputational damage (ldoko et al., 2024).
Organizations must establish robust contingency plans and
recovery strategies to minimize the impact of such
incidents. However, the effectiveness of these plans is
often tested during real crises, revealing gaps in
preparedness and response capabilities (Sowmya & Anita
2023). Continuous training and simulation exercises are
necessary to ensure that personnel are equipped to handle
emergencies effectively.

VI. FUTURE DIRECTIONS AND
OPPORTUNITIES

A. Advances in Al for Cybersecurity

Artificial Intelligence (Al) has emerged as a
transformative technology in the field of cybersecurity,
significantly enhancing the ability of organizations to
detect, respond to, and mitigate cyber threats. As cyber
threats become increasingly sophisticated and pervasive,
Al-driven solutions are proving essential for safeguarding
sensitive data and ensuring operational continuity. This
section outlines recent advances in Al technologies
applied to cybersecurity, highlighting their impact,
effectiveness, and future potential.

» Enhanced Threat Detection

One of the primary applications of Al in
cybersecurity is threat detection. Machine learning
algorithms are capable of analyzing vast amounts of data
to identify patterns indicative of potential security
breaches. For instance, anomaly detection systems utilize
unsupervised learning techniques to establish baseline
behavior for network activity and flag deviations that may
signify an intrusion (Dasgupta et al., 2022). Research has

shown that Al-based threat detection systems can
significantly reduce false positives while improving the
speed and accuracy of identifying potential threats (Akpan
etal., 2022).

» Predictive Analytics

Al technologies are increasingly being used for
predictive analytics in cybersecurity. By using historical
data and machine learning models, organizations can
forecast potential threats and vulnerabilities before they
materialize. Predictive models analyze trends and patterns
in cyber incidents, allowing organizations to take proactive
measures to mitigate risks (ljiga et al., 2024). For example,
Al-driven threat intelligence platforms can aggregate data
from multiple sources to predict emerging threats, helping
organizations prioritize their security investments
effectively (Pitropakis et al., 2020).

» Automated Incident Response

Al is revolutionizing incident response by enabling
automation and orchestration of security protocols.
Automated systems can respond to detected threats in real
time, significantly reducing the response time to incidents
(Uzoma et al., 2023). Al-driven Security Orchestration,
Automation, and Response (SOAR) solutions integrate
various security tools and streamline incident response
processes, allowing security teams to focus on more
complex threats. Studies indicate that organizations
employing  Al-driven  automation  experience a
considerable reduction in incident response times,
enhancing overall cybersecurity resilience (Uzoma et al.,
2023).

» User Behavior Analytics (UBA)

User Behavior Analytics (UBA) employs Al
algorithms to monitor user activity and detect anomalies
that may indicate compromised accounts or insider threats.
By establishing a baseline of normal user behavior, UBA
systems can identify unusual patterns, such as
unauthorized access or unusual data transfers (G. Martin et
al., 2021). This capability is critical for organizations in
preventing data breaches and ensuring compliance with
regulatory standards, as it enables timely detection and
mitigation of insider threats (Singh et al., 2020).

> Al in Network Security

Al is increasingly integrated into network security
solutions to enhance the protection of critical
infrastructure. Al-driven firewalls and intrusion detection
systems can analyze network traffic in real time, adapting
to new threats and evolving attack vectors (Sowmya &
Anita 2023). These systems utilize machine learning
algorithms to recognize legitimate traffic patterns,
enabling them to block suspicious activity proactively.
Research indicates that Al-powered network security
solutions significantly enhance the overall security posture
of organizations by reducing vulnerabilities and improving
threat response (ljiga et al., 2024).

B. Development of Maritime-Specific Al Models

The maritime industry is increasingly turning to
artificial intelligence (Al) to enhance operational
efficiency, safety, and security. However, the unique
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challenges and requirements of maritime operations
necessitate the development of maritime-specific Al
models tailored to address the sector's complexities. This
section discloses the development of these specialized Al
models, highlighting their applications, benefits, and the
factors influencing their design.

» Understanding Maritime-Specific Challenges
Maritime operations encompass a range of activities,
including navigation, logistics, and maintenance, all of
which present unique challenges. These challenges include
harsh environmental conditions, geographical isolation,
complex regulatory frameworks, and the need for real-time
decision-making  (Fruth &  Teuteberg, 2017).
Consequently, Al models designed for the maritime
industry must consider these factors to be effective. For
example, models need to account for varying weather
patterns, tidal changes, and navigational hazards that are
critical for safe operations (Rawson & Brito, 2023).

» Data Collection and Integration

The development of maritime-specific Al models
relies heavily on data collection from various sources,
including satellite imagery, weather data, ship sensors, and
AIS (Automatic Identification System) data. Integrating
this diverse data into a cohesive framework is crucial for
training Al models effectively. Researchers have
emphasized the importance of high-quality, real-time data
to enhance the predictive capabilities of maritime Al
models (Dalaklis et al., 2023). Additionally, the
integration of 10T (Internet of Things) devices on vessels
allows for continuous data collection, enabling Al models
to adapt to changing conditions in real time (Ibokette et al.,
2024).

» Machine Learning Techniques for Maritime
Applications

Several machine learning techniques have been
successfully applied to develop maritime-specific Al
models. For instance, supervised learning algorithms are
commonly used for predictive maintenance by analyzing
historical data to forecast equipment failures (Simionetal.,
2024). Unsupervised learning techniques, such as
clustering, are utilized to identify anomalies in vessel
behavior, which can indicate potential security threats or
operational inefficiencies (Adu-Twum et al., 2024).
Furthermore, reinforcement learning is being explored for
optimizing route planning and fuel efficiency, enabling
vessels to navigate more efficiently under varying
conditions (Dasgupta et al., 2022).

» Al for Predictive Analytics in Maritime Operations
Predictive analytics powered by Al is transforming
maritime operations by enabling organizations to
anticipate potential issues before they arise. For example,
Al models can analyze historical voyage data to predict
delays caused by weather conditions or port congestion
(Mao & Larsson, 2023). This capability not only enhances
operational efficiency but also improves customer
satisfaction by providing more accurate arrival times.
Moreover, predictive maintenance models can optimize
maintenance schedules based on usage patterns, reducing
downtime and operational costs (Tinga et al., 2017).

» Enhanced Safety and Navigation

Al models specifically designed for navigation and
safety have the potential to significantly reduce accidents
at sea. For instance, collision avoidance systems utilize Al
algorithms to analyze real-time data from surrounding
vessels, weather conditions, and navigational charts to
suggest optimal routes (Pedrielli et al., 2019). These
systems can alert operators to potential collisions, enabling
timely interventions to prevent accidents. Additionally,
Al-driven decision support systems can assist crew
members in making informed choices during critical
situations, thereby enhancing overall safety (Ray et al.,
2013).

C. Collaboration Between Maritime and Tech Industries

The maritime industry is experiencing a significant
transformation driven by the adoption of advanced
technologies, particularly those originating from the tech
industry. Collaboration between these two sectors has
become essential to address the complexities of modern
maritime operations, enhance safety, improve efficiency,
and mitigate environmental impacts.

» The Need for Collaboration

The maritime industry faces numerous challenges,
including rising operational costs, regulatory compliance,
environmental sustainability, and cybersecurity threats. To
effectively address these challenges, maritime companies
are increasingly looking to technology firms for innovative
solutions (Fruth & Teuteberg, 2017). By using
technologies such as artificial intelligence (Al), the
Internet of Things (10T), and big data analytics, maritime
operators can enhance operational efficiency and adapt to
the rapidly changing maritime landscape (ldoko et al.,
2024).

» Areas of Collaboration

e Data Analytics and Decision Support

One of the most prominent areas of collaboration
between the maritime and tech industries is in data
analytics. Technology firms are providing maritime
companies with tools to collect, analyze, and interpret vast
amounts of data from various sources, including sensors
on vessels, weather data, and AIS (Automatic
Identification System) information (Sekularac-Ivosevié¢ &
MiloSevi¢ 2019). This collaboration facilitates better
decision-making, predictive maintenance, and operational
optimization. For example, big data analytics can identify
patterns in fuel consumption and port operations, allowing
shipping companies to reduce costs and improve
efficiency (Bari et al., 2016).

e Cybersecurity Solutions

As the maritime industry becomes increasingly
digitized, the importance of cybersecurity has grown.
Collaboration with tech firms specializing in cybersecurity
is vital for safeguarding critical infrastructure and sensitive
data from cyber threats (Akpan et al., 2022). Technology
companies are developing Al-driven cybersecurity
solutions that can monitor maritime networks in real time,
detect anomalies, and respond to potential threats
proactively. By partnering with tech firms, maritime
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organizations can enhance their cybersecurity posture and
ensure compliance with regulatory standards (Tam &
Jones, 2018).

e Autonomous and Remote Operations

The development of autonomous vessels and remote
operations represents another significant area of
collaboration. Tech companies are at the forefront of
creating the Al and sensor technologies necessary for
autonomous  navigation (ldoko et al., 2024).
Collaborations between maritime firms and tech startups
have led to the testing and implementation of autonomous
vessels that can operate with minimal human intervention,
enhancing safety and reducing labor costs. These
partnerships are essential for navigating the regulatory
landscape and ensuring that autonomous technologies
meet safety and operational standards (Idoko et al., 2024).

» Challenges in Collaboration

Despite the numerous benefits of collaboration,
several challenges hinder effective partnerships between
the maritime and tech industries. One significant challenge
is the cultural gap between the two sectors. The maritime
industry has traditionally been conservative and slow to
adopt new technologies, while tech firms are often more
agile and innovative (Sekularac-Ivosevi¢ & Milosevic,
2019). This cultural difference can lead to
misunderstandings and misaligned expectations.

Additionally, the complexity of maritime operations
requires tailored solutions that may not always align with
the standardized products offered by tech companies.
Successful collaboration requires a deep understanding of
maritime processes and operational nuances, which can be
challenging for tech firms that lack industry experience
(Fruth & Teuteberg, 2017).

VII. SUMMARY AND CONCLUSION

A. Summary of Key Findings

The maritime industry is at a pivotal juncture,
navigating the challenges posed by an increasingly
complex operational landscape characterized by rising
cybersecurity threats, environmental concerns, and the
demands for greater efficiency and safety. The integration
of advanced technologies, particularly artificial
intelligence (Al) and network automation, has the potential
to revolutionize maritime operations, making them more
resilient, secure, and sustainable.

The influence of extreme environmental conditions
on maritime operations cannot be overstated. Harsh
weather and geographical isolation exacerbate existing
vulnerabilities,  necessitating  robust  cybersecurity
frameworks to safeguard critical systems and ensure
uninterrupted operations (Akpan et al., 2022). The
integration of Al-driven intrusion detection systems (IDS)
can significantly enhance the maritime industry’s ability to
mitigate these risks through real-time monitoring and
adaptive response mechanisms (Bari et al., 2016).

While the benefits of technology adoption in the
maritime industry are clear, challenges remain, including
the need for cultural alignment between maritime and tech
sectors, data integration issues, and regulatory compliance.
Addressing these challenges requires a concerted effort
from all stakeholders involved, including policymakers,
industry leaders, and technology providers. Continued
investment in research and development, along with strong
partnerships, will be vital in shaping the future of maritime
operations (lIdoko et al, 2024).

B. Conclusion

Finally, the path forward for the maritime industry
lies in embracing digital transformation through strategic
collaboration with tech partners. By adopting cutting-edge
technologies and innovative practices, the maritime sector
will not only enhance its operational capabilities but also
build a more sustainable and secure future, ultimately
contributing to the resilience of global supply chains.
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