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Abstract 

Pseudo-Computed Tomography (PCT) is an innovative imaging technique designed to simulate the high-resolution, cross-

sectional images generated by traditional Computed Tomography (CT), without the associated risks of ionizing radiation. By 

integrating data from non-ionizing imaging modalities such as Magnetic Resonance Imaging (MRI), ultrasound, and other 

advanced imaging systems, PCT produces images that closely resemble those of conventional CT scans. This non-invasive 

technique holds considerable promise for medical diagnostics, treatment planning, and radiation-free imaging, particularly in 

radiation-sensitive settings. This review provides a comprehensive examination of the methodologies behind PCT, its current 

applications, the challenges it faces, and its future potential in advancing imaging technologies, especially in environments 

where minimizing radiation exposure is critical. 

 

I. INTRODUCTION 

 
Computed Tomography (CT) is typically used to 

image hard tissues, whereas Magnetic Resonance Imaging 

(MRI) provides superior clarity for soft tissues. In 

Radiation Therapy Treatment Planning (RTP), MRI plays 

a vital role not only in planning but also in confirming 

patient positioning for accurate treatment delivery. When 

CT and MRI are co-registered in RTP, it can lead to 

systematic errors. An MRI-only workflow for radiation 

therapy would be advantageous, as it could eliminate these 

errors, simplify patient care processes, and reduce the 

patient’s exposure to radiation. Although MRI does not 

directly relate signal intensity to electron density like CT 

does, MRI-only methods for treatment planning have been 

successfully developed. CT images, on the other hand, 

enable dose calculation based on tissue electron density 

and voxel count, while a digitally reconstructed radiograph 

is derived from tissue attenuation (Dowling J A et al., 

2015). In recent years, the preference for MRI-based 

treatment planning has increased, replacing CT images in 

many cases. The excellent contrast offered by MRI 

improves the ability to accurately identify tumor tissues 

and Organs at Risk (OAR). The main advantages of MRI-

based planning include its ability to provide high-quality 

functional imaging, its lack of ionizing radiation, and its 

cost-effectiveness. MRI’s superior soft tissue contrast 

makes it easier to differentiate tumor tissue from 

surrounding healthy tissues, allowing for more precise 

delineation of the affected regions. Furthermore, MRI 

scans can be performed before, during, or after treatment 

without any risk of radiation exposure to the patient. 

Technologies like MRI-Cobalt and MRI-Linac, which are 

already in use at several treatment centers, are being 

utilized for Image-Guided Radiation Therapy (IGRT). For 

accurate treatment planning and dose calculation with 

MR-Linac, the assumption of homogeneous electron 

densities throughout the patient’s volume is essential. If 

the electron density is heterogeneous, dosimetric 

discrepancies exceeding 2% may arise compared to 

homogeneous assumptions. Although fusion techniques 

can align MRI data with CT scans, they come with 

limitations, such as increased costs and extended scanning 

times, especially for soft tissue imaging. Using MRI-based 

imaging systems can reduce reliance on CT, thus lowering 

both costs and patient discomfort while improving the 

accuracy of brain imaging. While MRI-only radiation 

therapy planning offers several advantages, it still faces 

challenges, particularly in addressing geometric 

distortions caused by non-uniform magnetic fields, 

gradient nonlinearity, and patient-induced susceptibilities. 

Additionally, conventional MRI-based treatment planning 

software cannot calibrate images based on electron density 

due to differences in imaging protocols. 

https://www.ijsrmt.com/
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II. METHODS 

 

One approach to generating electron density maps 

involves registering MRI images with CT scans. The 

potential for replacing CT with MRI-only simulation 

systems for radiation therapy planning has been explored 

in several studies [16-19]. Recent advancements in MRI 

technology have led to the development of various 

methods for estimating electron density in external 

radiation therapy. In these methods, each homogeneous 

density value within an MRI scan is converted into a 

manual contour, which corresponds to a specific region of 

interest using bulk density assignment. While this 

approach was developed to simplify the use of MRI in 

radiation planning, its accuracy may not match that of CT, 

particularly in generating Digitally Reconstructed 

Radiographs (DRR). By combining MRI data with CT 

images, a pseudo-CT image can be generated, which offers 

a simpler alternative to mapping complex anatomy using 

Atlas-based registration techniques. These techniques 

allow for the full automation of the image creation process 

and are less susceptible to intensity variations between the 

images. However, a limitation of this method is its 

inability to align atlases with anatomical features that are 

not included in the atlas training sets, potentially 

compromising the accuracy of the image alignment.MRI 

images and CT scan slices can be merged and analyzed 

simultaneously, particularly in soft tissues (Wegener et al., 

2018). However, fusion techniques come with their own 

limitations, including increased scan time and higher costs. 

On the other hand, MRI-only systems completely 

eliminate the need for CT, enhancing both the comfort and 

accuracy of brain segmentation. This approach effectively 

addresses the issues of increased costs, extended scan 

times, and other limitations associated with traditional 

fusion methods. 

 

While MRI-only radiation planning offers significant 

advantages, it is essential to consider geometric distortions 

caused by nonuniform magnetic fields, gradient 

nonlinearity, and patient susceptibility before accurate 

dose calculations and treatment planning can occur. MRI 

images used in radiation planning cannot be calibrated to 

electron density measurements due to differences in 

imaging protocols. To address this, electron density maps 

can be generated using techniques like rigid registration of 

MRI with CT, though this method becomes less feasible 

when the patient’s positioning differs between MRI and 

CT scans. 

 

Recent studies have explored the possibility of 

eliminating CT entirely from radiation therapy planning by 

implementing MRI-only simulation systems. Several 

methods for estimating electron density from MRI data 

have been developed in recent years, including the bulk 

density assignment approach, where a uniform density 

value is assigned to a specific area. While this method is 

more manageable, it does not provide the same level of 
precision as CT for generating reliable Digitally 

Reconstructed Radiographs (DRRs). 

 

To generate a substitute for CT, a target MRI can be 

compared to a CT scan using an atlas-based approach, 

which simplifies the process compared to mapping 

complex anatomy. The Atlas-based method—which 

converts standard MRI sequences into quasi-CT images—

is the only fully automated technique for creating pseudo-

CT images from MRI, and it is more robust against 

intensity variations between images. However, a limitation 

of this approach is that it cannot deform atlas images to 

match anatomical features absent from the atlas training 

sets. 

 

To address this, we propose a deformable registration 

method for semi-automatic segmentation using a selected 

atlas. Manually delineated MRI images were used to create 

a conjugated electron density atlas and a comprehensive 

MRI atlas, as described by Dowling et al. (2012). Our 

optimization method employs a robust block matching 

algorithm that ensures inverse consistency through a half-

space definition. This algorithm optimizes both half-space 

transformations and their inverses simultaneously. 

 

Additionally, a multi-atlas approach has been 

implemented, using the similarity of mapped 

morphological features between atlases and the target to 

create CT images from MRIs. For atlas-based learning of 

intensity maps, CT-MR images co-registered with a 

dictionary are commonly used as training sets. Other 

methods, such as Gaussian Mixture Regression and 

Random Forest Regression, have been applied to Dual 

Ultra-short Echo (dUTE) and multidimensional MRI 

images to generate pseudo-CT images. 

 

Another approach for creating pseudo-CT images 

uses voxel-based techniques. These methods, based on 

functional MRI sequences and short echo time (UTE) 

sequences, utilize standard MRI sequences and ultrashort 

echo times. Voxel-based weighted summation techniques 

combine unwrapped UTE phase maps with water-fat maps 

to create a pseudo-CT. The MRI intensity values are 

adjusted based on a second-order polynomial model to 

match T1/T2 weighted CT images. This technique 

converts CT Hounsfield Units (HU) into T1/T2 weighted 

MRI intensities, allowing the creation of a pseudo-CT that 

can be used to optimize ion radiotherapy treatment plans 

with voxel-wise tissue classification. 

 

Further studies by Chen et al. (2017), Cheng et al. 

(2018), and Chopra et al. (2005) introduced algorithms 

that combine Fuzzy Membership Functions (FCM) with 

the under-sampled UTE-mDixon pulse sequence to 

construct pseudo-CTs. Gaussian mixture regression was 

used in these studies to generate substitute CT images. 

 

A machine learning approach introduced by Wang et 

al. (2019) demonstrated the potential of creating high-

quality pseudo-CT images. Although the method showed 

promising image quality, the accuracy of dose calculation 
remains to be fully validated. Machine learning is also 

being explored to evaluate whether neurofocal Stereotactic 

Radiosurgery (SRS) dose calculations could be improved 
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using pseudo-CT images derived from MRIs processed by 

this algorithm. 

 

In a study involving 14 patients, we analyzed 19 

treatment plans using both CT simulations and MRI 

images. Dose distributions were calculated for both CT 

simulations and MRI-derived pseudo-CT images, 

comparing them with ground truth data. Dose-Volume 

Histograms (DVH) and gamma metrics were also 

evaluated for both pseudo-CT and ground truth images 

based on clinically relevant DVH metrics. The results 

showed a good comparison between the two imaging 

methods, with an adequate dose distribution. For the 

Planning Target Volumes (PTVs), the deviation was 

minimal (less than 0.6%), and there were no changes 

observed for the organs at risk. The gamma analysis 

yielded a pass rate of 99% for the pseudo-CT images. 

Using the proposed machine learning method, the 

researchers concluded that CT simulations could be 

replaced by their MRI-based method when treating the 

brain with Stereotactic Radiosurgery (SRS). According to 

the study, MRI images could eventually replace CT 

images entirely in the simulation and treatment planning 

processes. 

 

In a separate study, Koike et al. (2020) explored the 

use of an adversarial network to generate pseudo-CT 

images from MRI sequences and assess their use in brain 

radiation therapy planning. The researchers created a 

three-channel image for 15 patients with glioblastoma by 

combining T1-weighted, T2-weighted, and fluid-

attenuated inversion recovery images. They used a 

conditional Generative Adversarial Network (cGAN) to 

calculate the Mean Absolute Errors (MAE) of CT numbers 

from image patches. The study also performed a 

dosimetric evaluation of Volumetric Modulated Arc 

Therapy (VMAT) and 3D-Conformal Radiation Therapy 

(3D-CRT) using recalculated CT images and pseudo-CT 

data. The results showed no significant differences in 

isocenter doses, with dose differences for 2% of the 

volume (D2%), 50% of the volume (D50%), and 98% of 

the volume (D98%) all being less than 1.0%. The 

equivalent path length was slightly shorter in pseudo-CT 

images compared to CT by 0.6 ± 1.9 mm. This study 

demonstrated that pseudo-CT images can be reliably 

generated from MRI sequences using the cGAN 

algorithm, showcasing the potential for MRI-only 

radiation therapy planning. 

 

Li et al. (2020) investigated the conversion of MR/CT 

images to synthetic MRI images using U-Nets and Cycle-

Consistent Adversarial Networks (CycleGAN), two well-

known deep learning methods. Their results showed that 

the U-Net approach produced synthetic images with lower 

Mean Absolute Errors (MAE), higher Structural Similarity 

Indices (SSIM), and better Peak Signal-to-Noise Ratios 

(PSNR) when generating synthetic CT images. While 

CycleGAN-generated images had less contrast 
information, the U-Net synthetic images were closer in 

pixel value profiles to real-world images, confirming the 

superiority of supervised deep learning over unsupervised 

methods for MR/CT synthesis tasks. 

Xu et al. (2019) proposed using multiple Dixon MR 

images to create pseudo-CT (pCT) images for challenging 

abdominal regions, enabling MRI-only radiation therapy 

(RT). They employed a multichannel residual conditional 

generative adversarial network (MCRCGAN), which 

integrates various techniques to improve the accuracy of 

pseudo-CT generation. The MCRCGAN model captures 

more anatomical details from multiple MR images and 

produces accurate predictions even with limited training 

data. The study showed significant improvements in the 

quality and stability of pseudo-CT generation for MR-CT 

image pairs. 

 

In Juan et al.'s (2020) study, CycleGANs were used 

to generate pseudo-CT images from unregistered MRI/CT 

images of patients with brain tumors. Thirty-one patients 

underwent both MRI and CT simulation of the entire brain. 

The researchers used CycleGAN to translate MRI images 

into pseudo-CT images without supervision, after 

preprocessing the MRI and CT images to correct for head 

frame influences, scanning range discrepancies, and 

imaging resolution differences. The study demonstrated 

that CycleGANs could successfully translate unregistered 

MRI and CT images, reducing errors caused by multi-

modal image registration when delineating Gross Tumor 

Volumes (GTVs) in brain tumor patients. 

 

Lastly, Farhadi et al. (2019) proposed generating 

synthetic CT (sCT) and synthetic MR (sMR) images using 

an Atlas-based method. The study analyzed paired MR and 

CT data from 10 brain radiation therapy patients. The 

generated sCT/sMR images were compared to real CT/MR 

images by measuring the Mean Absolute Error (MAE). 

The results showed that sMR images (sT1w/sT2w) had 

lower MAEs compared to sCT images, and sCT images 

based on T1-weighted sequences correlated better with 

real CT images than those based on T2-weighted 

sequences. The study concluded that geometric details 

from CT targets were better transmitted to synthetic 

images than from MR targets. 

 

III. PRE-PROCESSING 

 
 Local Symmetry and Global Symmetry Based Methods 

(LSBM/GSBM) 

In the Local Symmetry-Based Method (lSBM), 

symmetry measures are initially optimized locally by 

tracing the mid-section of the brain. Based on this, the 

symmetry measure is then derived. Since this method only 

considers a part of the brain, it requires longer computation 

time compared to Global Symmetry-Based Methods 

(GSBM). Stegmann et al. (2015) explain that local 

symmetry is a significant factor in the failure of Global 

Symmetry (GS) to accurately represent the brain's 

hemispherical symmetry. This failure occurs because local 

symmetry, by focusing on individual parts of the brain, is 

more complex and computation-heavy than GSBM. Shah 

et al. (2014) also suggest that GS methods often fail to 
fully capture hemisphere symmetry due to this limitation. 

 

Kuijf et al. (2013) observed that local symmetry 

computations, which focus on smaller brain regions, can 
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be completed in approximately 0.5 seconds. Despite being 

computationally efficient, these methods lack the global 

perspective that GSBM offers, leading to inaccuracies 

when considering the entire brain’s symmetry. 

 

In contrast, GSBM methods, which reflect brain 

images on a sagittal axis to achieve accurate registration, 

can take longer to compute. Kuijf et al. (2013) found that 

the 3D rigid registration for GSBM took 33.6 seconds, 

highlighting the computational burden. Additionally, 

patients with cerebral atrophy tend to have errors in 

symmetry due to the widening of the interhemispheric 

fissure, which complicates the symmetric division of the 

brain. 

 

In 2003, researchers examined how Interhemispheric 

Fissure (IFP) influences the Symmetry Planes (SP), 

concluding that while the brain is symmetric, no two cases 

are identical. The difference between the Brain Symmetry 

Plane (BSP) and the Head Symmetry Plane (HSP) could 

be 0.53 (52/98), emphasizing the need for careful selection 

of the symmetry plane, particularly for abnormal subjects. 

 

 Techniques in Steganography 
Venna and Arivazhagan (2018) developed a method 

using weighted residuals and a small set of stereoscopic 

images to accurately determine spatial locations. This 

technique utilizes local weighting through a bivariate 

shrinkage function to enhance the spatial least significant 

bit (LSB) of stego images. Their method, which works 

without prior knowledge of the embedded algorithm, 

achieved 90% accuracy in estimating payload locations 

across 100 well-known stego images and five spatial LSB 

algorithms. 

 

Similarly, Chakraborty et al. (2020) introduced a 

blind image steganography technique that uses Local 

Binary Pattern (LBP) functions. By embedding these 

patterns into an image, the cover image retains its local 

relationships while achieving comparable embedding 

rates. Their method, based on feature extraction through 

LBP, demonstrated advantages over traditional LSB-based 

steganography methods. 

 

 Area-Based Methods (ABM) in Registration 
Area-Based Methods (ABM) are suitable for image 

registration where the primary content is grayscale or color 

intensities, rather than local shapes or structures. ABM 

involves finding similarities between images and then 

applying a transformation function. Mambo et al. (2018) 

suggest that integrating deep learning algorithms with the 

registration process could help address challenges in 

densely sampled data. 

 

In medical imaging, intensity-based registration is 

common, where image similarity is used to estimate 

transformations. Kuijf et al. (2013) and Fverstedt et al. 

(2019) demonstrated the advantages of this approach in 
medical image registration, particularly in non-rigid or 

multimodal scenarios. Kim et al. (2013) and Augusto et al. 

(2018) found that hybrid methods—combining intensity 

and feature-based approaches—often outperform purely 

feature-based methods in registering medical images. 

 

Recent studies also highlight the integration of deep 

learning into image registration, where CNNs 

(Convolutional Neural Networks) are employed to 

improve similarity computation and transformation 

estimation. For instance, Davatzikos et al. (2013) and Thijs 

Kooi et al. (2017) focused on enhancing registration 

accuracy by using deep learning architectures designed to 

compute similarities. 

 

 Optical Flow Methods in Image Registration 

Optical Flow Methods are employed to match 

corresponding pixels between two images, useful in 

applications like vehicle tracking, motion tracking, and 

pose recognition. These methods work by comparing pixel 

displacement between images, which is often a challenge 

due to variations in lighting, viewing conditions, and 

occlusions. 

 

Fortun et al. (2015) discussed various image 

transformation techniques, such as pixel-level 

displacement, affine transformation, and free-form 

transformation, used in optical flow analysis. CNNs and 

classical differential algorithms are commonly employed 

for this task. FlowNet (Dosovitskiy et al., 2015) and its 

later iterations, such as FlowNet2 (Ilg et al., 2017), have 

been proposed to estimate dense pixel displacement by 

analyzing the correlation between image pairs. 

 

Uzunova et al. (2017) used FlowNet to identify 

deformations in brain MRI images. Their research 

demonstrated that CNNs could effectively register images 

by focusing on contours and shapes, showing significant 

promise in medical image registration. These advances in 

deep learning and optical flow aim to improve the 

accuracy and efficiency of image alignment, particularly 

in large datasets like KITTI and Middlebury. 

 

 Feature-Based Methods (FBM) in Medical Imaging 

Feature-Based Methods (FBM) are widely used for 

image registration, especially in applications like brain 

MRI. These methods involve extracting distinctive 

features such as edges, blobs, and corners, which are then 

matched across images to estimate a transformation. 

Common feature extraction algorithms include SIFT, 

SURF, and ORB. 

 

Mizotin et al. (2013) applied feature-based methods 

to early-stage Alzheimer’s diagnosis by using SIFT 

features in medical images. This approach improved 

accuracy in detecting abnormalities by considering early 

imaging data and integrating additional classification 

steps. 

 

In the context of image registration, FBMs typically 

use similarity measures like L1-NORM, L2-NORM, or 
cosine correlation to match features, followed by 

transformation estimation using methods like RANSAC. 
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 Stereo Matching and Remote Sensing 
In stereo vision applications, deep neural networks 

(CNNs) are increasingly used for 3D modeling, robotic 

vision, and tracking. These networks use Siamese 

architectures to compute the similarity between image 

patches and match corresponding features across different 

viewpoints. Luo et al. (2016) and others have worked on 

improving stereo matching by incorporating fine-grained 

approaches that reduce registration times and enhance 

accuracy. 

 

Researchers have also extended stereo matching 

techniques to work with LIDAR and 3D point clouds 

(Elbaz et al., 2017), with autoencoders and deep learning 

models providing improvements in registration accuracy. 

These advancements make stereo vision systems more 

efficient and applicable in real-time environments. 

 

IV. IMAGE SEGMENTATION 

 

 Threshold-Based-Segmentation Methods 

Threshold-based-segmentation involves dividing an 

image into distinct regions based on predefined intensity 

values, which can be either hard or soft thresholds. This 

approach works best when there is a significant contrast 

between different regions in the image. However, it 

struggles with low-contrast images as it becomes sensitive 

to noise and intensity variations, leading to scattered, 

disconnected regions. Researchers have explored different 

variations of thresholding, often combining it with other 

techniques to enhance segmentation accuracy. 

 

For instance, Evelin et al. (2013) used thresholding to 

classify brain tissues such as white matter, gray matter, and 

cerebrospinal fluid (CSF) in MRI scans. By employing a 

single fixed threshold, the method split the image into two 

classes. While thresholding is not ideal for segmenting 

multi-channel images, it proves effective for detecting 

tumor regions. Aja-Fernandez et al. (2010) proposed an 

automated soft computing approach, comparing it to hard 

thresholding, k-means, Fuzzy C-Means (FCM), and 

traditional thresholding. They concluded that soft 

computing was more efficient and fully automated, 

offering a robust alternative to manual threshold selection, 

especially in noisy images like ultrasound and 

radiographic scans. 

 

 Region Growing 

In region growing, segmentation begins with a seed 

pixel (or group of pixels) and expands to neighboring 

pixels that share similar intensity characteristics. The 

process continues until no more pixels meet the intensity 

criteria for inclusion in the region. This method works best 

for segmenting regions with homogeneous intensity but 

can be less effective when intensity variations are minimal. 

A significant drawback is the manual selection of the seed 

point. 

 
Deng et al. (2010) addressed the challenge of seed-

point selection by considering variances and gradients 

along boundary curves in their region-growing method. 

This approach was successful in creating segmented 

images useful for detecting tumors and other abnormalities 

in brain MRIs. Zabir et al. (2015) applied region-growing 

combined with level set analysis to detect gliomas 

(malignant tumors) in MRI images. In a similar vein, 

Xiang et al. (2002) developed a hybrid 3D segmentation 

method, combining fuzzy region growing, mathematical 

morphology, and the Sobel 3D edge detector to segment 

white matter and the entire brain. The results demonstrated 

that hybrid models outperform individual algorithms in 3D 

segmentation, offering greater robustness and accuracy. 

Alia et al. (2010) used Fuzzy C-Means clustering to 

segment brain regions affected by sclerosis lesions, 

proving the method's ability to automatically identify the 

number of clusters for MRI scans. 

 

 Morphological Segmentation 
Morphological operators are often used for detecting 

structures in images, such as tumors, by emphasizing the 

shape and structure of regions. These operators can be 

combined with other methods for more effective 

segmentation results. For example, Roger et al. (2001) and 

Zhang et al. (2002) used morphological operators to detect 

brain tumors in MRI images. Nandi (2002) combined these 

operators with thresholding and watershed algorithms to 

enhance tumor detection. The combination proved more 

effective than clustering algorithms like k-means for tumor 

segmentation. Additionally, Roger Hult (2001) used grey-

level morphology to segment the cortex in MRI slices, 

helping classify tumors as benign or malignant. A 

histogram-based approach was employed to identify 

threshold values for separating brain tissue from 

surrounding body regions, with binary and morphological 

operators providing effective segmentation. 

 

 Cluster-Based Segmentation 
Cluster-based segmentation groups pixels into 

clusters based on shared intensity or probability values, 

without prior knowledge of the image content. k-means 

and FCM clustering methods are commonly used to detect 

brain tumors. Combining clustering with other techniques 

often enhances segmentation accuracy. 

 

For example, Qurat-ul et al. (2010) developed a 

system using naive Bayes classification to identify tumor 

regions and k-means clustering with boundary detection to 

segment them, achieving a 99% accuracy rate. Agarwal et 

al. (2015) demonstrated that level-set segmentation 

combined with bias field-corrected fuzzy c-means 

outperformed individual techniques in segmenting brain 

MRIs, offering a method well-suited for tumor detection 

in developing countries. 

 

In a study by Vinu et al., a multifaceted machine 

learning approach was used to improve brain tumor 

segmentation in MRI images. This approach integrated 

various models such as CNN, SVM, RNN, KNN, and 

Random Forest. The CNN model achieved the highest 

accuracy (91.3%), followed by RNN (87.6%), KNN 
(85.4%), SVM (94.3%), and RF (9.78%). The results 

highlight the effectiveness of combining multiple machine 

learning techniques for precise tumor segmentation. 
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Senthilkumar et al. (2019) developed an algorithm 

that automatically segments both normal tissues (white 

matter, gray matter, CSF) and abnormal tissues (tumors) 

from MR images. The algorithm utilizes a curvelet 

transformation for noise removal and modified spatial 

fuzzy c-means (FCM) for tissue segmentation. This 

approach improves accuracy by incorporating spatial 

information and smoothing regions to reduce background 

noise. 

 

Hua et al. (2021) introduced an improved version of 

Fuzzy C-Means (IMV-FCM), which addresses uncertainty 

in segmentation tasks. The method adapts clustering by 

assigning different weights to views based on their 

contribution to the overall segmentation, overcoming the 

noise sensitivity issues that often affect traditional FCM. 

 

 Neural Network-Based Segmentation 

Neural networks, particularly Convolutional Neural 

Networks (CNNs), have become a key tool in the 

segmentation of gray matter (GM), white matter (WM), 

and CSF in brain MRIs. Mahbod et al. (2018) developed 

an ANN framework that integrates volumetric shape 

models for brain segmentation. Their method combined 

intensity-based texture fitting with level-set-based 

statistical shape fitting, achieving high accuracy in 

segmenting GM, WM, and CSF. The results demonstrated 

that this approach is effective for brain tissue 

segmentation. 

 

McClure et al. (2019) introduced a Bayesian Deep 

Neural Network (DNN) that can predict structural MRI 

volume segmentation in a fraction of the time, making it 

highly efficient. By using spike-and-slab dropout-based 

variational inference, the method outperformed previous 

segmentation techniques, particularly in estimating the 

uncertainty of segmentation predictions, which is crucial 

for quality control. 

 

Havaei et al. (2017) explored the use of Deep Neural 

Networks (DNNs) for automatically segmenting 

glioblastomas (brain tumors) in MRI images. Their CNN-

based method incorporated both local and global context 

for improved segmentation performance, offering a 40-

fold speed improvement over conventional CNN 

architectures. Their work also introduced a cascade 

architecture, where the output of one CNN served as input 

for a second CNN, further enhancing tumor segmentation 

accuracy. 

 

In McCinley et al. (2021), two CNN-based methods 

were compared for segmenting gray matter and lesions in 

multi-modal MRI scans. The methods—3D Unet and 

DeepSCAN—were retrained and tested on a larger dataset. 

The study found that DeepSCAN provided the most 

accurate results, particularly when weak anatomical labels 

were included, making it a powerful tool for lesion 

detection and anatomical label prediction. 
 

 

 

V. FEATURE EXTRACTION AND FEATURE 

SELECTION 

 
 Feature Extraction and Segmentation Techniques 

The identification of brain tumors through Magnetic 

Resonance Imaging (MRI) is a sophisticated process, 

requiring detailed examination of features such as shape, 

texture, intensity, and binary patterns. These 

characteristics are fed into classifiers that categorize 

tumors based on their distinct traits. However, extracting 

relevant features from complex brain tissues like white 

matter, gray matter, and cerebral spinal fluid remains a 

significant challenge due to their diverse structures. 

 

 Texture Features Based on Second-Order Gray Level 

Co-occurrence Matrices (GLCM) 
Texture analysis encompasses not just shape, size, 

and color, but also pixel intensity variations. A prominent 

method for extracting texture features in medical images 

is the Gray Level Co-occurrence Matrix (GLCM), which 

captures the spatial relationships between pixel intensities. 

 

In a study by Usha et al. (2019), GLCM texture 

features were extracted from MRI brain images in three 

distinct phases: 1) Hierarchical Transformation Technique 

(HTT) for mask selection, 2) texture feature extraction, 

and 3) classification. HTT utilizes morphological 

operations, including top-hat and bottom-hat transforms, 

to enhance the image quality before extracting statistical 

texture attributes like contrast, correlation, energy, 

entropy, and homogeneity. The extracted features are 

subsequently used for classification with Support Vector 

Machines (SVM). This method was compared against 

conventional approaches, showing promising results. 

 

Similarly, Kanchana et al. (2017) proposed a method 

for detecting ischemic stroke lesions using bin-based 

histogram analysis combined with GLCM. This statistical 

approach achieved a confidence interval of 95% for 

distinguishing between affected and unaffected regions, 

providing a reliable classification. 

 

Rastogi et al. (2020) introduced a deep learning 

approach using Convolutional Neural Networks (CNNs) 

to classify brain tumors, emphasizing the role of 

radiologists in diagnosis. Their CNN model, which 

utilized multi-branch networks and inception blocks, 

demonstrated exceptional accuracy (99.30%) when 

applied to the Br35H dataset, outperforming conventional 

models like Support Vector Classifiers (SVC) and 

Decision Trees. 

 

Dastmalchian et al. (2021) incorporated Magnetic 

Resonance Fingerprinting (MRF) to extract texture 

features from both gliomas and metastases. Statistical 

analysis of these features, including rank-sum tests and 

Kaplan-Meier survival analysis, further refined tumor 

classification. 
 

In another study, Li et al. (2020) used GLCM features 

in conjunction with SVM-Recursive Feature Elimination 

(SVM-RFE) for tumor segmentation. By selecting key 
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features, they achieved a Dice Similarity Coefficient 

(DSC) of 0.60, indicating a strong segmentation 

capability. 

 

 Intensity-Based or First-Order Histogram Features 

First-order histogram features are based on the 

individual pixel intensities rather than their spatial 

relationships. These include mean, variance, skewness, 

and kurtosis, which can help differentiate between tumor 

and non-tumor regions. 

 

Rehman et al. (2020) explored the use of intensity-

based features from FLAIR MRI images to locate brain 

tumors. By generating texton maps from segmented 

superpixels and applying Gabor filters for noise removal, 

their model was able to achieve an 88% Dice overlap score 

using a Leave-One-Out Cross-Validation (LOOCV) 

approach. Their findings demonstrate the utility of 

combining first-order statistical features with advanced 

segmentation techniques. 

 

Sharma et al. (2019) also explored the use of GLCM 

and first-order statistics for classifying brain images into 

normal and abnormal categories. Using Principal 

Component Analysis (PCA) to reduce dimensionality, 

they achieved a high classification rate of 95.45% with 

SVM and 77.27% with K-Nearest Neighbors (KNN). 

 

Carré et al. (2020) evaluated various intensity 

normalization techniques for MRI images, including Nyul, 

WhiteStripe, and Z-Score normalization. Their study 

indicated that normalization could significantly improve 

classification performance, especially in tumor grading, 

yielding balanced accuracy scores above 80%. 

 

VI. CLASSIFICATION METHODS 

 

Classification of brain tumors from MRI images can 

be significantly enhanced by incorporating advanced 

machine learning techniques, such as Generative 

Adversarial Networks (GANs) and Convolutional Neural 

Networks (CNNs). 

 

Frid-Adar et al. (2018) demonstrated that GANs 

could generate synthetic medical images to augment 

training datasets, leading to improved classification 

performance. Their approach, which focused on liver 

lesions, showed that adding synthetic data increased 

sensitivity and specificity, improving classification 

accuracy to 88.4%. 

 

Emami et al. (2018) used GANs and ResNet 

architectures for generating synthetic CT images (synCT) 

from T1-weighted MRI data. Their approach, validated 

through cross-validation, resulted in highly accurate 

synCT images, contributing to better treatment planning 

for brain cancer patients. 

 
Hane et al. (2017) proposed a method for generating 

synthetic CT images (sCT) from MRI data using a deep 

CNN model. Their approach utilized a 27-layer 

convolutional network and demonstrated impressive 

accuracy in comparing sCT with true CT images, 

furthering the application of CNNs in image synthesis for 

medical imaging. 

 

Li et al. (2018) developed a u-net-based Fully 

Convolutional Network (FCN) model to predict MR/CT 

image transformations. Their model was able to synthesize 

accurate CT images from MRI data, contributing to more 

efficient radiation therapy planning. 

 

Li et al. (2019) introduced a cycle-GAN-based 

method for generating synthetic CT images from MR data. 

Their approach was validated on 14 patient datasets, 

achieving highly accurate results with a Mean Absolute 

Error (MAE) of 60.9 HU, making it suitable for clinical 

radiation therapy planning. 

 

Gholamiankhah et al. (2021) compared GANs and 

Residual Networks (ResNets) for generating synthetic CT 

images from MRI data. Their results showed that ResNets 

outperformed GANs in terms of CT value accuracy, with 

a Mean Absolute Error (MAE) of 114.1 HU, compared to 

the MAE of 147.0 HU from GANs. 

 

Singh et al. (2021) proposed a CNN-LSTM model for 

detecting tooth decay. Their model achieved a remarkable 

accuracy of 96%, outperforming traditional CNN models 

like AlexNet and GoogleNet in classifying dental images. 

 

These advancements in image segmentation, feature 

extraction, and classification highlight the significant 

potential of deep learning and advanced statistical methods 

in improving brain tumor diagnosis and treatment 

planning. The integration of various techniques, from 

GLCM texture analysis to generative models like GANs, 

continues to push the boundaries of medical imaging and 

radiology. 

 

VII. CONCLUSION 

 
MRI-only radiation therapy planning offers 

significant advantages by eliminating many of the issues 

associated with using CT images, such as the need for 

additional CT scans, repeated dosing, and image 

validation. However, a major challenge lies in the fact that 

MRI signal intensities do not correlate directly with the 

biological tissue attenuation coefficients, making it 

difficult to generate accurate electron density maps. This 

discrepancy leads to complications such as increased 

workloads, ambiguities from inter-modality image 

registration, and unnecessary patient exposure to radiation. 

While MRI is the preferred modality, the creation of a 

pseudo-CT (pCT) from MRI is essential for generating 

reliable electron density maps and patient reference 

images. Given the transformative impact of deep learning 

across various fields, developing a precise and reliable 

model for generating pCTs from MRI data is crucial to 

advancing radiation therapy planning. 
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