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Abstract 

In this work, we study the properties of Huye Museum Shapes that we regard as topological subspaces of the 

Euclidean plane ℝ². The properties under consideration are number of connected components and number of holes. 

We further look at the classification of these spaces by using the concepts of homeomorphism. Among the 50 

considered spaces, we show that there are only 36 spaces that are not homeomorphic, this means that there are 36 

equivalence classes with respect to homeomorphism equivalence. Each of those 50 spaces might be classified in one 

of those 36 distinct equivalence class. 

 

I. INTRODUCTION 

 

In Mathematics, mappings that preserve the 

structural aspect of a set play important roles. [6]. 

Mainly, they are used to map complicated sets into 

simpler or better-known ones to establish the 

properties of sets under consideration. In group theory, 

it is well known that isomorphisms are structure-

preserving bijections between groups[12]. These kinds 

of mappings preserve all properties of groups, and two 

groups with an isomorphism between them are said to 

be isomorphic, and from a group theory point of view, 

there is no difference between such groups. 

 

A similar concept in topology is the notion of 

homeomorphism, between topo- logical spaces. A 

homeomorphism is defined as a bijective continuous 

function between two topological spaces that has a 

continuous inverse function. Like iso- morphisms, 

homeomorphisms preserve all topological properties 

of spaces under which they are defined. Two spaces 

with a homeomorphism between them are said to be 

homeomorphic, and from a topological point of view, 

such spaces are similar[10]. 

 

Since being isomorphic is an equivalence 

relation, the concept of isomorphism in group theory is 

used to classify groups into equivalent ones. Similarly, 

h in topology are used to classify topological spaces. 
 

Let X and Y be topological spaces. A bijective 

mapping f : X → Y is called a homeomorphism if f 

is continuous and the inverse function f −1 is 

continuous. The topological spaces X and Y are said to 

be homeomorphic if such a function exists. In this 

case, there is no topological difference between X 
and Y. Let us observe that being homeomorphic is 

reflexive, symmetric, and transitive and hence it is an 

equivalence relation. Accordingly, homeomorphisms 

can be used to classify a given collection of 

topological spaces into equivalence classes[1]. 

 

Homeomorphic spaces must have the same 

number of connected components and the same 

number of holes. However, spaces can have the same 

number of connected components and holes but not be 

homeomorphic[9]. In this project, we consider the 

collection of Huye museum shapes as topological 

spaces, The list of such spaces is presented at the end 

of this paper. The first problem considered here is to 

study the topological properties such as connectedness, 

path-connectedness, and to look at the number of 

invariant of those spaces. The second problem that is 

considered, is to classify those spaces by using the 

concepts of homeomorphism based on their 

topological invariants. We assume that these spaces 

have the subspace topology inherited from plane ℝ² 

with the Euclidean topology. However, the same 

classification can be made by considering ℝ² with 
another topology. 

https://www.ijsrmt.com/
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II. LITERATURE REVIEW 
 

A homeomorphism is defined as a continuous 

bijective function with a continuous inverse, 

preserving the intrinsic ”topological” properties of a 

shape such as connectedness, compactness, and the 

number of holes. Classic topology texts such as 

Munkres (2000) and Hocking Young (1961) have laid 

the groundwork by rigorously defining topological 

spaces, open sets, continuity, and homeomorphic 

transformations. 

 

Two shapes are homeomorphic if they have 

the same number of connected components and 

holes. Edelsbrunner and Harer (2010) emphasized 

the use of these invariants in computational 

topology and shape recognition. 

 

In computer vision, recognizing whether two 

shapes are homeomorphic is crucial for object 

classification, segmentation, and image registration. 

Zomorodian and Carlsson (2005) showed how 

topological fingerprints of shapes can be used to 

classify them robustly. Furthermore, Frosini and 

Landi (1999) developed size functions to compare 

shapes in a topologically meaningful way, applicable 

even when the shapes are not geometrically similar. 

 

Recent research combines machine learning with 

topological invariants to learn shape similarity. The 

integration of deep learning with topological constraints 

(e.g., Hofer et al., 2019) has opened new avenues for 

shape classification and morphing. Moreover, 

homotopy-aware clustering and graph neural networks 

on simplicial complexes are active areas of exploration 

that extend the homeomorphism concept into data-

driven shape analysis. 

 

III. METHODOLOGY 

 

In this study we use 50 photos taken from Huye 

museum fencing wall. There are so many shapes at 

Huye National museum, but some of them are 

continuous deformations of the others, and some of 

them look like they are equivalent. Our intention is to 

classify those image in their homeomorphism class 

based on their topological features. 

 

 Topological invariants 

 

  Definition 3.1:  
A quantity I associated with topological spaces is 

a topological invariant if X and Y are homeomorphic 

implies that I(X) = I(Y). 

The number of vertices, (n-vertices, in fact, for n ≥ 3), 

and the number of holes in the object are the 

topological invariants that we can identify. 

 

 Vertices 
The Number and type of vertices are the first 

topological invariant is in an object. Actually, a vertex 

is a point where multiple curves intersect or join 

together. The vertex type is determined by the number 

of intersecting curves[3]. 

 

 Definition 3.2:  

An n-vertex in a subset L of a topological space 

X is an ele- ment v ∈ L such that there exists some 

neighborhood N0 ⊆ X of v where all neighborhoods N 

⊆ N0 of v satisfy the following properties: 

N ∩ L is connected. 

 

The set formed by removing v from N ∩ L, 

i.e., {a ∈ N ∩ L|a ≠ v}, is not connected, and is 

composed of exactly n disjoint sets, each of which is 

connected. 

 

A set is connected if it is all in one piece. The 

above definition of n-vertex it means that if objects are 

close to vertex, it look like one component, and if we 

remove vertex from that component, then we get 

separate components each which is connected. 

 

Since homeomorphism preserve connectedness, 

we say that the number of n- vertices is topological 

invariant for given n ≥ 3. Thus, the connected set 

around a vertex must map to another connected set, 

and the set of n disjoint, connected pieces must map to 

another set of n-disjoint connected pieces[7]. 

 

In a nutshell any set close to a n-vertex is 

homeomorphic to any other set close to a n-vertex. 

 

  Example 3.3:  

Three curves intersecting in a 3-vertex are 

homeomorphic to any other three curves intersecting in 

a 3-vertex. However, they are not homeomorphic to a 

single curve. 

 

 Holes 
Topologically, a function mapping a space with a 

hole to one without a hole cannot be a 

homeomorphism. It is clear that a loop is not 

homeomorphic to a path with endpoints because it 

violates the continuity requirement of 

homeomorphism. So, number of hole is topological 

invariant[8]. 

 

 Homeomorphism 

Homeomorphism is the most important concept 

in the field of topology because it preserve all 

properties given by a topology, and by that define a 

correspondence between points and between open sets 

in two topological spaces. Homeomorphism is defined 

as follow: 

 

Let X and Y be two topological spaces, and let 

f : X → Y be a bijection with inverse f −1 : Y → X. 

If both f and f −1 are continuous function, then f is 

said to be homeomorphism. If there exists 

homeomorphism between X and Y, we say that X and 

Y are homeomorphic or topologically equivalent, and 

we denote this by X ∼= Y[4]. 
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Let f : X → Y be a bijective function. For f 

−1 : Y → X to be continuous, it must be true that ( 

f −1)−1(U) is open in Y for every open set U in X. 

But since f is bijection, ( f −1)−1(U) = f (U) for U ⊂ 

X. Thus f (U) must be open in Y for every open set 

in U in X. Therefore saying that f −1 is continuous 

when f is bijection is equivalent to saying that the 

image of every open set under f is an open set. 

Similarly, saying that f is continuous when f is 

bijection is equivalent to saying that the image of 

every open set under the inverse function, f −1, is an 

open set[5]. 

We can say that f is homeomorphism if it is 

bijection on a points, and bi- jection on a collection 

of open sets making up the topology involved. Every 

point in X is matched to unique point in Y, with no 

point in Y is left over. At the same time, every open 

set in X is matched to unique open set in Y, with no 

open set in Y is left over. 

 

  Example 3.4:  
As spaces having the topology inherited from 

ℝ², the following topological spaces are 

homeomorphic: 

 

 
Fig 1 Example of Homeomorphic Topological Spaces. 

 

  Example 3.5:  

As spaces having the topology inherited from ℝ², the following topological spaces are not homeomorphic. 

Indeed, the first space is made by one component while the second is made by five components. However, one can 

observe that each component in the second space is homeomorphic to the first space. 

 

 
Fig 2 Example of Topological Spaces Which are Not Homeomorphic. 
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 Theorem 3.6: Being Homeomorphic is an 

Equivalence Relation. 
The theorem 3.6 implies that homeomorphism 

satisfy the following properties: 

 

 Refrexivity : X is homeomorphic to X. 

 Symmetry : If X is homeomorphic to Y, then Y is 

homeomorphic to X. 

 Transitivity : If X is homeomorphic to Y, and Y 
is homeomorphic to Z, then X is homeomorphic to 

Z 

 

The resulting equivalence classes are called 

homeomorphism classes 

 

IV. RESULT 

 
 Topological invariant of Huye museum shapes as 

topological subspaces of the plane 

The topological invariant that are considered 

here are the number of holes and the number of 

connected components. 

 

 Number of holes 

The number of holes of topological spaces is one 

among the topological invariant that can be used in the 

classification of homeomorphic topological spaces. 

For instance a circle, a square, and a rectangle, taken 

as subspaces of ℝ² with the Euclidean topology, are 

topologically equivalent. However, no one of them is 

topologically equivalent to a disc. According to the 

number of holes that is observed in each museum 

shape, taking them as topological spaces, they are 

classified as follows: 

 

 1 Hole: X30. 

 3 Holes: X35. 

 4 Holes: X14, X18, X27 and X34. 

 5 Holes: X13, X17. 

 6 Holes : X7. 

 8 Holes: X41. 

 9 Holes: X26. 

 

All other spaces which are not appearing on this 

list have no holes, and no topological space having 

more than 9 holes. 

 

 Number of connected components 

As discussed in the previous sections, 

components of a topological spaces are the maximal 

connected subsets in such a space. According, if a 

topological space is connected, it then has one 

component. This implies that a topological space with 

more than one component must be a disconnected 

topological space[2]. 

 

By looking at Huye museum shapes as 

topological subspaces of ℝ², and an- alyzing them, 
according to the number of connected components, 

these spaces can be classified as follows: 

 

 

 2 Connected components: X12, X21, X29, X33, X40, 

X41, X48 and X50. 

 3 Connected components: X9, X15, X23 and X44. 

 4 Connected components: X1, X3, X4, X11, X27, X46 

and X49. 

 5 Connected components: X25. 

 6 Connected components: X17. 

 7 Connected components: X5. 

 9 Connected components: X20 and X45. 

 12 Connected components: X2 and X22. 

 16 connected components: X37. 

 17 Connected components: X43. 

 18 Connected components: X47. 

 

All the spaces which are not mentioned on this 

list have only one component and hence they are 

connected. No topological space having more than 18 

connected components. 

 

 Homeomorphic Spaces 

One of the most important concept is topological 

spaces, is the notion of homeo- morphisms. A 

homeomorphism or topological isomorphism is the 

most important concept in the field of topology 

because it preserve all properties given by a topology. 

It is defined as a bijective continuous function between 

topological spaces, and having a continuous inverse. If 

two topological spaces X and Y are homeomorphic; it 

means that there is a homeomorphism between them, 

then topologically, there is not difference between 

them. 

 

Since homeomorphisms preserve all topological 

properties between spaces, the concepts of 

connectedness, number of holes, connected 

components, cutting sets, and so on, can be used to 

study homeomorphism in a class of spaces. For 

instance, if X is connected and Y is disconnected, the 

two spaces can not be homeomorphic. If X has one 

holes and Y has more than one holes, the two spaces 

can not be topologically equivalent[11]. 

 

In the following we identify topological 

equivalent spaces, by using connect- edness, number 

of holes, the number of connected components and 

other other techniques such as the cutting sets (points), 

in Huye museum shapes taken as topological 

subspaces of the plane. We point out that the concept 

of distance between points (or sets), the property of 

being bounded, the size (length, area, and volume), 

and the angles between objects, are meaningless in 

topological point of view. Hence, these concepts are 

not preserved by homeomorphism, since they are not 

defined by using open sets. Taking into consideration, 

the theory about homeomorphism, we can classify 

Huye museum shapes as topological spaces into 

homeomorphic equivalences. 

 
Since the number of connected components is a 

topological property, and hence preserved by 

homeomorphisms, meaning two homeomorphic spaces 

must have the same number of connected components, 
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it follows that [X17], [X5], [X25], [X37], [X43] and [X47] 

are equivalence classes. Each of them contains no 

other elements. 

 

Since the number of holes that a topological 

space contains it is a topological property, and hence 

preserved by homeomorphisms, it follows that [X30], 

[X35], [X7],[X26] and [X41] are equivalence classes. 

Each of them contains no other elements. 

 

The spaces X13 and X17 have the same number of 

holes, but they have a different number of connected 

components. Hence they can not be homeomorphic, 

and thus [X13], and [X17] are different equivalence 

classes, each containing no other elements. 

 

The spaces X2 and X22 have the same number of 

connected components, and each component from X2 

is homeomorphic to each component from X22. Hence 

the two spaces are topologically equivalent, and thus 

[X2, X22] is an equivalence class. 

 

The spaces X20 and X45 have the same number of 

connected components. One component of X45 is a 

point, which is not the case for X20, and thus they are 

not homeomorphic. It follows that each of them forms 

its own class. Hence [X20] and [X45] are equivalence 

classes, each containing no other elements. 

 

The spaces X14, X18, X27 and X34 have the same 

number of holes, but no one is homeomorphic to 

another. Indeed, removing the middle solid square in 

X14, we remain with a topological space connected 

with one hole. However, there is no solid square which 

can be removed from X18 and X34 to remains with a 

connected topological space with one hole. Such a 

square will leave X14 with at least two holes. Hence X14 

is homeomorphic to any of X18 and X34. Each 

horizontal line leaves two connected components for 

X34, but there are horizontal line which give more that 

two connected components. Hence X18 and X34 are not 

homeomorphic. The space X27 is not homeomorphic to 

any of X14, X18 and X34 since it has four connected 

components which is not the case for the others. 

Accordingly, we have [X14], [X18], [X27] and [X34] as 

equivalence classes, containing no other elements. 

 

The spaces X9, X15, X23 and X44 have the same 

number of connected components. As one can observe, 

any two components from different spaces are 

homeomorphic and thus the spaces belong to the 

same equivalence class, that we denote by [X9, X15, 

X23, X44]. 

 

The spaces X1, X3, X4, X11, X27, X46 and X49 have 

the same number of connected components. In above 

we have observed that X27 forms its own class, and 

thus it not homeomorphic to any of those spaces. We 
observe that the spaces X1, X4, X46 and X49 are 

homeomorphic. They are made by homeomorphic 

components, and thus they belong to the same 

equivalence class. No one of them is homeomorphic to 

X11, since each component for X11 is like a circle, 

which is not the case for the others. We observe also 

that the space X3 is not homeomorphic to any of these 

spaces. Hence we have the equivalence classes [X1, 

X4, X46, X49], [X11], and [X3]. 

 

The spaces X12, X21, X29, X33, X40, X41, X48 and X50 

have the same number of con- nected components. 

We observe directly that that the spaces X12, X21, 

X33, X40 and X48 are homeomorphic, since any two 

components from different spaces are homeomorphic. 

No one of them is equivalent to X29 or X41. The spaces 

X41 is not homeomorphic to X29, since X29 has no holes 

while X41 have holes. Accordingly, we have the classes 

[X12, X21, X33, X40, X48], [X29] and [X41]. 

 

The remaining non-classified spaces are X6, X8, 

X10, X16, X19, X24, X28, X31, X32, X36, X38, X39 and X42, 

and they are connected without holes. We observe 

that the spaces X6, X10, X24, and X39 are like a section of 

a continuous curve in the plane. Hence they are 

homeomorphic, and accordingly, [X6, X10, X24, X39] is 

an equivalence class. 

 

To classify the spaces X8, X16, X19, X28, X31, X32, 

X36, X38 and X42, we study two by two. 

 

The spaces X38 and X42 are not homeomorphic. 

Indeed, each horizontal line leaves two connected 

components for X39 but there are horizontal lines 

which give more than three connected components for 

X42. 

 

The spaces X36 and X38 are not homeomorphic. 

Indeed, five points removed in X38 can leave at most 

four connected components, while in X36, there are five 

points which can be removed and remain with six 

connected components. 

 

The spaces X32 and X36 are not homeomorphic. 

Indeed, no vertical line leaves more than four 

connected components for X36, but there are vertical 

lines which leave five connected components for X32. 

A similar reasoning (by looking cutting sets), we 

observe that no spaces in the pairs X32 and X31, X31 

and X28, X28 and X19, X19 and X19, X16 and X8 are 

homeomorphic. Hence each of them forms its own 

class, and thus we the equivalences classes [X8], [X16], 

[X19, [X28], [X31], [X32], [X36], [X38] and [X42] 

containing no more elements. 

 

In summary, homeomorphic equivalence classes 

in Huye museum shapes regarded as topological 

subspaces of the plane, are the following: 

 

31 Equivalences classes with one element: [X17], 

[X5], [X25], [X37], [X43], [X47], [X30], [X35], [X7],[X26], 

[X41], [X13], [X20], [X45], [X14], [X18], [X27], 
 

[X34], [X11], [X3], [X29], [X41], [X8], [X16], [X19, 

[X28], [X31], [X32], [X36], [X38] and [X42]. 

 



103 

1 Equivalence classes with two elements: [X2, 

X22]. 

 

3 Equivalence classes with four elements: [X9, 

X15, X23, X44], [X1, X4, X46, X49] and [X6, X10, X24, X39]. 

 

1 Equivalence class with five elements: [X12, 

X21, X33, X40, X48]. 

 

V. DISCUSSION 

 

We have 36 equivalence classes, and 

accordingly, among the 50 topological spaces 

considered, only 36 spaces are not equivalent in the 

topological point of view. If two spaces are in the 

same equivalence class, then no difference between 

them in topological point of view. This means that if a 

space is making its own class, without any other one, 

then such a space is topologically different to the 

others. 

 

Since homeomorphisms preserve all topological 

properties, it follows that all topological spaces that 

are classified in the same class have the same 

topological properties. Accordingly, to study the 

properties of spaces in one class, it enough to study 

one space, and take the conclusion on all other spaces 

belonging in that class. 

 

VI. CONCLUSION 

 

In this work, we have studied the topological 

properties of Huye museum shapes, that we take as 

topological spaces in the plane. The main properties 

which took into consideration were connectedness, 

compactness and path connectedness. We have also 

calculated different topological invariant for those 

spaces, such as the number of holes and the number of 

connected components, observed for each space. 

 

The main problem which was under 

consideration was the classification of those spaces 

(regarded as topological subspaces of the Euclidean 

plane ℝ²) into equivalent classes by using the concept 

of topological invariants. Among the 50 topological 

spaces considered in this work, we found that some of 

them are similar (from the topological point of view). 

We found that there are 36 equivalence classes in 

terms of homeomorphism, which means that there are 

only 36 non- homeomorphic spaces. The concept of 

homeomorphism is extremely important in the field of 

topology because is the correct and exact way of 

knowing the equality of topological spaces. If two 

spaces are homeomorphic, they have exactly the same 

topological properties and they are indistinguishable. 

 

RECOMMENDATIONS 
 

This section is dedicated to the 

recommendations to be taken into consideration for 

improving future research-oriented in the same area. 

 

We have classified Huye museum shapes by 

using the concepts of homeo- morphism. However, 

there are many concepts in the topology that can be 

used to classify topological spaces. I recommend that 

in further study about this topic, different topological 

concepts beyond homeomorphism can be taken into 

consideration. 

 

Nowadays, advanced machine learning 

algorithms are being used to capture hidden patterns in 

images. I recommend using a machine learning 

algorithm capable of capturing similarities in the 

topological invariants extracted in this study. 
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Fig 3 Huye Ethnographic Shapes 
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